You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1905 lines
61 KiB
1905 lines
61 KiB
[[webflux-oauth2-resource-server]] |
|
= OAuth 2.0 Resource Server |
|
|
|
Spring Security supports protecting endpoints using two forms of OAuth 2.0 https://tools.ietf.org/html/rfc6750.html[Bearer Tokens]: |
|
|
|
* https://tools.ietf.org/html/rfc7519[JWT] |
|
* Opaque Tokens |
|
|
|
This is handy in circumstances where an application has delegated its authority management to an https://tools.ietf.org/html/rfc6749[authorization server] (for example, Okta or Ping Identity). |
|
This authorization server can be consulted by resource servers to authorize requests. |
|
|
|
[NOTE] |
|
==== |
|
A complete working example for {gh-samples-url}/reactive/webflux/java/oauth2/resource-server[*JWTs*] is available in the {gh-samples-url}[Spring Security repository]. |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-jwt-minimaldependencies]] |
|
== Minimal Dependencies for JWT |
|
|
|
Most Resource Server support is collected into `spring-security-oauth2-resource-server`. |
|
However, the support for decoding and verifying JWTs is in `spring-security-oauth2-jose`, meaning that both are necessary in order to have a working resource server that supports JWT-encoded Bearer Tokens. |
|
|
|
[[webflux-oauth2resourceserver-jwt-minimalconfiguration]] |
|
== Minimal Configuration for JWTs |
|
|
|
When using https://spring.io/projects/spring-boot[Spring Boot], configuring an application as a resource server consists of two basic steps. |
|
First, include the needed dependencies and second, indicate the location of the authorization server. |
|
|
|
=== Specifying the Authorization Server |
|
|
|
In a Spring Boot application, to specify which authorization server to use, simply do: |
|
|
|
[source,yml] |
|
---- |
|
spring: |
|
security: |
|
oauth2: |
|
resourceserver: |
|
jwt: |
|
issuer-uri: https://idp.example.com/issuer |
|
---- |
|
|
|
Where `https://idp.example.com/issuer` is the value contained in the `iss` claim for JWT tokens that the authorization server will issue. |
|
Resource Server will use this property to further self-configure, discover the authorization server's public keys, and subsequently validate incoming JWTs. |
|
|
|
[NOTE] |
|
To use the `issuer-uri` property, it must also be true that one of `https://idp.example.com/issuer/.well-known/openid-configuration`, `https://idp.example.com/.well-known/openid-configuration/issuer`, or `https://idp.example.com/.well-known/oauth-authorization-server/issuer` is a supported endpoint for the authorization server. |
|
This endpoint is referred to as a https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig[Provider Configuration] endpoint or a https://tools.ietf.org/html/rfc8414#section-3[Authorization Server Metadata] endpoint. |
|
|
|
And that's it! |
|
|
|
=== Startup Expectations |
|
|
|
When this property and these dependencies are used, Resource Server will automatically configure itself to validate JWT-encoded Bearer Tokens. |
|
|
|
It achieves this through a deterministic startup process: |
|
|
|
1. Hit the Provider Configuration or Authorization Server Metadata endpoint, processing the response for the `jwks_url` property |
|
2. Configure the validation strategy to query `jwks_url` for valid public keys |
|
3. Configure the validation strategy to validate each JWTs `iss` claim against `https://idp.example.com`. |
|
|
|
A consequence of this process is that the authorization server must be up and receiving requests in order for Resource Server to successfully start up. |
|
|
|
[NOTE] |
|
If the authorization server is down when Resource Server queries it (given appropriate timeouts), then startup will fail. |
|
|
|
=== Runtime Expectations |
|
|
|
Once the application is started up, Resource Server will attempt to process any request containing an `Authorization: Bearer` header: |
|
|
|
[source,html] |
|
---- |
|
GET / HTTP/1.1 |
|
Authorization: Bearer some-token-value # Resource Server will process this |
|
---- |
|
|
|
So long as this scheme is indicated, Resource Server will attempt to process the request according to the Bearer Token specification. |
|
|
|
Given a well-formed JWT, Resource Server will: |
|
|
|
1. Validate its signature against a public key obtained from the `jwks_url` endpoint during startup and matched against the JWTs header |
|
2. Validate the JWTs `exp` and `nbf` timestamps and the JWTs `iss` claim, and |
|
3. Map each scope to an authority with the prefix `SCOPE_`. |
|
|
|
[NOTE] |
|
As the authorization server makes available new keys, Spring Security will automatically rotate the keys used to validate the JWT tokens. |
|
|
|
The resulting `Authentication#getPrincipal`, by default, is a Spring Security `Jwt` object, and `Authentication#getName` maps to the JWT's `sub` property, if one is present. |
|
|
|
From here, consider jumping to: |
|
|
|
<<webflux-oauth2resourceserver-jwt-jwkseturi,How to Configure without Tying Resource Server startup to an authorization server's availability>> |
|
|
|
<<webflux-oauth2resourceserver-jwt-sansboot,How to Configure without Spring Boot>> |
|
|
|
[[webflux-oauth2resourceserver-jwt-jwkseturi]] |
|
=== Specifying the Authorization Server JWK Set Uri Directly |
|
|
|
If the authorization server doesn't support any configuration endpoints, or if Resource Server must be able to start up independently from the authorization server, then the `jwk-set-uri` can be supplied as well: |
|
|
|
[source,yaml] |
|
---- |
|
spring: |
|
security: |
|
oauth2: |
|
resourceserver: |
|
jwt: |
|
issuer-uri: https://idp.example.com |
|
jwk-set-uri: https://idp.example.com/.well-known/jwks.json |
|
---- |
|
|
|
[NOTE] |
|
The JWK Set uri is not standardized, but can typically be found in the authorization server's documentation |
|
|
|
Consequently, Resource Server will not ping the authorization server at startup. |
|
We still specify the `issuer-uri` so that Resource Server still validates the `iss` claim on incoming JWTs. |
|
|
|
[NOTE] |
|
This property can also be supplied directly on the <<webflux-oauth2resourceserver-jwt-jwkseturi-dsl,DSL>>. |
|
|
|
[[webflux-oauth2resourceserver-jwt-sansboot]] |
|
=== Overriding or Replacing Boot Auto Configuration |
|
|
|
There are two ``@Bean``s that Spring Boot generates on Resource Server's behalf. |
|
|
|
The first is a `SecurityWebFilterChain` that configures the app as a resource server. When including `spring-security-oauth2-jose`, this `SecurityWebFilterChain` looks like: |
|
|
|
.Resource Server SecurityWebFilterChain |
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(OAuth2ResourceServerSpec::jwt) |
|
return http.build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
jwt { } |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
If the application doesn't expose a `SecurityWebFilterChain` bean, then Spring Boot will expose the above default one. |
|
|
|
Replacing this is as simple as exposing the bean within the application: |
|
|
|
.Replacing SecurityWebFilterChain |
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.pathMatchers("/message/**").hasAuthority("SCOPE_message:read") |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(oauth2 -> oauth2 |
|
.jwt(withDefaults()) |
|
); |
|
return http.build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize("/message/**", hasAuthority("SCOPE_message:read")) |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
jwt { } |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
The above requires the scope of `message:read` for any URL that starts with `/messages/`. |
|
|
|
Methods on the `oauth2ResourceServer` DSL will also override or replace auto configuration. |
|
|
|
For example, the second `@Bean` Spring Boot creates is a `ReactiveJwtDecoder`, which decodes `String` tokens into validated instances of `Jwt`: |
|
|
|
.ReactiveJwtDecoder |
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
public ReactiveJwtDecoder jwtDecoder() { |
|
return ReactiveJwtDecoders.fromIssuerLocation(issuerUri); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun jwtDecoder(): ReactiveJwtDecoder { |
|
return ReactiveJwtDecoders.fromIssuerLocation(issuerUri) |
|
} |
|
---- |
|
==== |
|
|
|
[NOTE] |
|
Calling `{security-api-url}org/springframework/security/oauth2/jwt/ReactiveJwtDecoders.html#fromIssuerLocation-java.lang.String-[ReactiveJwtDecoders#fromIssuerLocation]` is what invokes the Provider Configuration or Authorization Server Metadata endpoint in order to derive the JWK Set Uri. |
|
If the application doesn't expose a `ReactiveJwtDecoder` bean, then Spring Boot will expose the above default one. |
|
|
|
And its configuration can be overridden using `jwkSetUri()` or replaced using `decoder()`. |
|
|
|
[[webflux-oauth2resourceserver-jwt-jwkseturi-dsl]] |
|
==== Using `jwkSetUri()` |
|
|
|
An authorization server's JWK Set Uri can be configured <<webflux-oauth2resourceserver-jwt-jwkseturi,as a configuration property>> or it can be supplied in the DSL: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(oauth2 -> oauth2 |
|
.jwt(jwt -> jwt |
|
.jwkSetUri("https://idp.example.com/.well-known/jwks.json") |
|
) |
|
); |
|
return http.build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
jwt { |
|
jwkSetUri = "https://idp.example.com/.well-known/jwks.json" |
|
} |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
Using `jwkSetUri()` takes precedence over any configuration property. |
|
|
|
[[webflux-oauth2resourceserver-jwt-decoder-dsl]] |
|
==== Using `decoder()` |
|
|
|
More powerful than `jwkSetUri()` is `decoder()`, which will completely replace any Boot auto configuration of `JwtDecoder`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(oauth2 -> oauth2 |
|
.jwt(jwt -> jwt |
|
.decoder(myCustomDecoder()) |
|
) |
|
); |
|
return http.build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
jwt { |
|
jwtDecoder = myCustomDecoder() |
|
} |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
This is handy when deeper configuration, like <<webflux-oauth2resourceserver-jwt-validation,validation>>, is necessary. |
|
|
|
[[webflux-oauth2resourceserver-decoder-bean]] |
|
==== Exposing a `ReactiveJwtDecoder` `@Bean` |
|
|
|
Or, exposing a `ReactiveJwtDecoder` `@Bean` has the same effect as `decoder()`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
public ReactiveJwtDecoder jwtDecoder() { |
|
return NimbusReactiveJwtDecoder.withJwkSetUri(jwkSetUri).build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun jwtDecoder(): ReactiveJwtDecoder { |
|
return ReactiveJwtDecoders.fromIssuerLocation(issuerUri) |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-jwt-decoder-algorithm]] |
|
== Configuring Trusted Algorithms |
|
|
|
By default, `NimbusReactiveJwtDecoder`, and hence Resource Server, will only trust and verify tokens using `RS256`. |
|
|
|
You can customize this via <<webflux-oauth2resourceserver-jwt-boot-algorithm,Spring Boot>> or <<webflux-oauth2resourceserver-jwt-decoder-builder,the NimbusJwtDecoder builder>>. |
|
|
|
[[webflux-oauth2resourceserver-jwt-boot-algorithm]] |
|
=== Via Spring Boot |
|
|
|
The simplest way to set the algorithm is as a property: |
|
|
|
[source,yaml] |
|
---- |
|
spring: |
|
security: |
|
oauth2: |
|
resourceserver: |
|
jwt: |
|
jws-algorithm: RS512 |
|
jwk-set-uri: https://idp.example.org/.well-known/jwks.json |
|
---- |
|
|
|
[[webflux-oauth2resourceserver-jwt-decoder-builder]] |
|
=== Using a Builder |
|
|
|
For greater power, though, we can use a builder that ships with `NimbusReactiveJwtDecoder`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
ReactiveJwtDecoder jwtDecoder() { |
|
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri) |
|
.jwsAlgorithm(RS512).build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun jwtDecoder(): ReactiveJwtDecoder { |
|
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri) |
|
.jwsAlgorithm(RS512).build() |
|
} |
|
---- |
|
==== |
|
|
|
Calling `jwsAlgorithm` more than once will configure `NimbusReactiveJwtDecoder` to trust more than one algorithm, like so: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
ReactiveJwtDecoder jwtDecoder() { |
|
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri) |
|
.jwsAlgorithm(RS512).jwsAlgorithm(ES512).build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun jwtDecoder(): ReactiveJwtDecoder { |
|
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri) |
|
.jwsAlgorithm(RS512).jwsAlgorithm(ES512).build() |
|
} |
|
---- |
|
==== |
|
|
|
Or, you can call `jwsAlgorithms`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
ReactiveJwtDecoder jwtDecoder() { |
|
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri) |
|
.jwsAlgorithms(algorithms -> { |
|
algorithms.add(RS512); |
|
algorithms.add(ES512); |
|
}).build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun jwtDecoder(): ReactiveJwtDecoder { |
|
return NimbusReactiveJwtDecoder.withJwkSetUri(this.jwkSetUri) |
|
.jwsAlgorithms { |
|
it.add(RS512) |
|
it.add(ES512) |
|
} |
|
.build() |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-jwt-decoder-public-key]] |
|
=== Trusting a Single Asymmetric Key |
|
|
|
Simpler than backing a Resource Server with a JWK Set endpoint is to hard-code an RSA public key. |
|
The public key can be provided via <<webflux-oauth2resourceserver-jwt-decoder-public-key-boot,Spring Boot>> or by <<webflux-oauth2resourceserver-jwt-decoder-public-key-builder,Using a Builder>>. |
|
|
|
[[webflux-oauth2resourceserver-jwt-decoder-public-key-boot]] |
|
==== Via Spring Boot |
|
|
|
Specifying a key via Spring Boot is quite simple. |
|
The key's location can be specified like so: |
|
|
|
[source,yaml] |
|
---- |
|
spring: |
|
security: |
|
oauth2: |
|
resourceserver: |
|
jwt: |
|
public-key-location: classpath:my-key.pub |
|
---- |
|
|
|
Or, to allow for a more sophisticated lookup, you can post-process the `RsaKeyConversionServicePostProcessor`: |
|
|
|
.BeanFactoryPostProcessor |
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
BeanFactoryPostProcessor conversionServiceCustomizer() { |
|
return beanFactory -> |
|
beanFactory.getBean(RsaKeyConversionServicePostProcessor.class) |
|
.setResourceLoader(new CustomResourceLoader()); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun conversionServiceCustomizer(): BeanFactoryPostProcessor { |
|
return BeanFactoryPostProcessor { beanFactory: ConfigurableListableBeanFactory -> |
|
beanFactory.getBean<RsaKeyConversionServicePostProcessor>() |
|
.setResourceLoader(CustomResourceLoader()) |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
Specify your key's location: |
|
|
|
```yaml |
|
key.location: hfds://my-key.pub |
|
``` |
|
|
|
And then autowire the value: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Value("${key.location}") |
|
RSAPublicKey key; |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Value("\${key.location}") |
|
val key: RSAPublicKey? = null |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-jwt-decoder-public-key-builder]] |
|
==== Using a Builder |
|
|
|
To wire an `RSAPublicKey` directly, you can simply use the appropriate `NimbusReactiveJwtDecoder` builder, like so: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
public ReactiveJwtDecoder jwtDecoder() { |
|
return NimbusReactiveJwtDecoder.withPublicKey(this.key).build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun jwtDecoder(): ReactiveJwtDecoder { |
|
return NimbusReactiveJwtDecoder.withPublicKey(key).build() |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-jwt-decoder-secret-key]] |
|
=== Trusting a Single Symmetric Key |
|
|
|
Using a single symmetric key is also simple. |
|
You can simply load in your `SecretKey` and use the appropriate `NimbusReactiveJwtDecoder` builder, like so: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
public ReactiveJwtDecoder jwtDecoder() { |
|
return NimbusReactiveJwtDecoder.withSecretKey(this.key).build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun jwtDecoder(): ReactiveJwtDecoder { |
|
return NimbusReactiveJwtDecoder.withSecretKey(this.key).build() |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-jwt-authorization]] |
|
=== Configuring Authorization |
|
|
|
A JWT that is issued from an OAuth 2.0 Authorization Server will typically either have a `scope` or `scp` attribute, indicating the scopes (or authorities) it's been granted, for example: |
|
|
|
`{ ..., "scope" : "messages contacts"}` |
|
|
|
When this is the case, Resource Server will attempt to coerce these scopes into a list of granted authorities, prefixing each scope with the string "SCOPE_". |
|
|
|
This means that to protect an endpoint or method with a scope derived from a JWT, the corresponding expressions should include this prefix: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.mvcMatchers("/contacts/**").hasAuthority("SCOPE_contacts") |
|
.mvcMatchers("/messages/**").hasAuthority("SCOPE_messages") |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(OAuth2ResourceServerSpec::jwt); |
|
return http.build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize("/contacts/**", hasAuthority("SCOPE_contacts")) |
|
authorize("/messages/**", hasAuthority("SCOPE_messages")) |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
jwt { } |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
Or similarly with method security: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@PreAuthorize("hasAuthority('SCOPE_messages')") |
|
public Flux<Message> getMessages(...) {} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@PreAuthorize("hasAuthority('SCOPE_messages')") |
|
fun getMessages(): Flux<Message> { } |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-jwt-authorization-extraction]] |
|
==== Extracting Authorities Manually |
|
|
|
However, there are a number of circumstances where this default is insufficient. |
|
For example, some authorization servers don't use the `scope` attribute, but instead have their own custom attribute. |
|
Or, at other times, the resource server may need to adapt the attribute or a composition of attributes into internalized authorities. |
|
|
|
To this end, the DSL exposes `jwtAuthenticationConverter()`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(oauth2 -> oauth2 |
|
.jwt(jwt -> jwt |
|
.jwtAuthenticationConverter(grantedAuthoritiesExtractor()) |
|
) |
|
); |
|
return http.build(); |
|
} |
|
|
|
Converter<Jwt, Mono<AbstractAuthenticationToken>> grantedAuthoritiesExtractor() { |
|
JwtAuthenticationConverter jwtAuthenticationConverter = |
|
new JwtAuthenticationConverter(); |
|
jwtAuthenticationConverter.setJwtGrantedAuthoritiesConverter |
|
(new GrantedAuthoritiesExtractor()); |
|
return new ReactiveJwtAuthenticationConverterAdapter(jwtAuthenticationConverter); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
jwt { |
|
jwtAuthenticationConverter = grantedAuthoritiesExtractor() |
|
} |
|
} |
|
} |
|
} |
|
|
|
fun grantedAuthoritiesExtractor(): Converter<Jwt, Mono<AbstractAuthenticationToken>> { |
|
val jwtAuthenticationConverter = JwtAuthenticationConverter() |
|
jwtAuthenticationConverter.setJwtGrantedAuthoritiesConverter(GrantedAuthoritiesExtractor()) |
|
return ReactiveJwtAuthenticationConverterAdapter(jwtAuthenticationConverter) |
|
} |
|
---- |
|
==== |
|
|
|
which is responsible for converting a `Jwt` into an `Authentication`. |
|
As part of its configuration, we can supply a subsidiary converter to go from `Jwt` to a `Collection` of granted authorities. |
|
|
|
That final converter might be something like `GrantedAuthoritiesExtractor` below: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
static class GrantedAuthoritiesExtractor |
|
implements Converter<Jwt, Collection<GrantedAuthority>> { |
|
|
|
public Collection<GrantedAuthority> convert(Jwt jwt) { |
|
Collection<?> authorities = (Collection<?>) |
|
jwt.getClaims().getOrDefault("mycustomclaim", Collections.emptyList()); |
|
|
|
return authorities.stream() |
|
.map(Object::toString) |
|
.map(SimpleGrantedAuthority::new) |
|
.collect(Collectors.toList()); |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
internal class GrantedAuthoritiesExtractor : Converter<Jwt, Collection<GrantedAuthority>> { |
|
override fun convert(jwt: Jwt): Collection<GrantedAuthority> { |
|
val authorities: List<Any> = jwt.claims |
|
.getOrDefault("mycustomclaim", emptyList<Any>()) as List<Any> |
|
return authorities |
|
.map { it.toString() } |
|
.map { SimpleGrantedAuthority(it) } |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
For more flexibility, the DSL supports entirely replacing the converter with any class that implements `Converter<Jwt, Mono<AbstractAuthenticationToken>>`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
static class CustomAuthenticationConverter implements Converter<Jwt, Mono<AbstractAuthenticationToken>> { |
|
public AbstractAuthenticationToken convert(Jwt jwt) { |
|
return Mono.just(jwt).map(this::doConversion); |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
internal class CustomAuthenticationConverter : Converter<Jwt, Mono<AbstractAuthenticationToken>> { |
|
override fun convert(jwt: Jwt): Mono<AbstractAuthenticationToken> { |
|
return Mono.just(jwt).map(this::doConversion) |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-jwt-validation]] |
|
=== Configuring Validation |
|
|
|
Using <<webflux-oauth2resourceserver-jwt-minimalconfiguration,minimal Spring Boot configuration>>, indicating the authorization server's issuer uri, Resource Server will default to verifying the `iss` claim as well as the `exp` and `nbf` timestamp claims. |
|
|
|
In circumstances where validation needs to be customized, Resource Server ships with two standard validators and also accepts custom `OAuth2TokenValidator` instances. |
|
|
|
[[webflux-oauth2resourceserver-jwt-validation-clockskew]] |
|
==== Customizing Timestamp Validation |
|
|
|
JWT's typically have a window of validity, with the start of the window indicated in the `nbf` claim and the end indicated in the `exp` claim. |
|
|
|
However, every server can experience clock drift, which can cause tokens to appear expired to one server, but not to another. |
|
This can cause some implementation heartburn as the number of collaborating servers increases in a distributed system. |
|
|
|
Resource Server uses `JwtTimestampValidator` to verify a token's validity window, and it can be configured with a `clockSkew` to alleviate the above problem: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
ReactiveJwtDecoder jwtDecoder() { |
|
NimbusReactiveJwtDecoder jwtDecoder = (NimbusReactiveJwtDecoder) |
|
ReactiveJwtDecoders.fromIssuerLocation(issuerUri); |
|
|
|
OAuth2TokenValidator<Jwt> withClockSkew = new DelegatingOAuth2TokenValidator<>( |
|
new JwtTimestampValidator(Duration.ofSeconds(60)), |
|
new IssuerValidator(issuerUri)); |
|
|
|
jwtDecoder.setJwtValidator(withClockSkew); |
|
|
|
return jwtDecoder; |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun jwtDecoder(): ReactiveJwtDecoder { |
|
val jwtDecoder = ReactiveJwtDecoders.fromIssuerLocation(issuerUri) as NimbusReactiveJwtDecoder |
|
val withClockSkew: OAuth2TokenValidator<Jwt> = DelegatingOAuth2TokenValidator( |
|
JwtTimestampValidator(Duration.ofSeconds(60)), |
|
JwtIssuerValidator(issuerUri)) |
|
jwtDecoder.setJwtValidator(withClockSkew) |
|
return jwtDecoder |
|
} |
|
---- |
|
==== |
|
|
|
[NOTE] |
|
By default, Resource Server configures a clock skew of 60 seconds. |
|
|
|
[[webflux-oauth2resourceserver-validation-custom]] |
|
==== Configuring a Custom Validator |
|
|
|
Adding a check for the `aud` claim is simple with the `OAuth2TokenValidator` API: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
public class AudienceValidator implements OAuth2TokenValidator<Jwt> { |
|
OAuth2Error error = new OAuth2Error("invalid_token", "The required audience is missing", null); |
|
|
|
public OAuth2TokenValidatorResult validate(Jwt jwt) { |
|
if (jwt.getAudience().contains("messaging")) { |
|
return OAuth2TokenValidatorResult.success(); |
|
} else { |
|
return OAuth2TokenValidatorResult.failure(error); |
|
} |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
class AudienceValidator : OAuth2TokenValidator<Jwt> { |
|
var error: OAuth2Error = OAuth2Error("invalid_token", "The required audience is missing", null) |
|
override fun validate(jwt: Jwt): OAuth2TokenValidatorResult { |
|
return if (jwt.audience.contains("messaging")) { |
|
OAuth2TokenValidatorResult.success() |
|
} else { |
|
OAuth2TokenValidatorResult.failure(error) |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
Then, to add into a resource server, it's a matter of specifying the `ReactiveJwtDecoder` instance: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
ReactiveJwtDecoder jwtDecoder() { |
|
NimbusReactiveJwtDecoder jwtDecoder = (NimbusReactiveJwtDecoder) |
|
ReactiveJwtDecoders.fromIssuerLocation(issuerUri); |
|
|
|
OAuth2TokenValidator<Jwt> audienceValidator = new AudienceValidator(); |
|
OAuth2TokenValidator<Jwt> withIssuer = JwtValidators.createDefaultWithIssuer(issuerUri); |
|
OAuth2TokenValidator<Jwt> withAudience = new DelegatingOAuth2TokenValidator<>(withIssuer, audienceValidator); |
|
|
|
jwtDecoder.setJwtValidator(withAudience); |
|
|
|
return jwtDecoder; |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun jwtDecoder(): ReactiveJwtDecoder { |
|
val jwtDecoder = ReactiveJwtDecoders.fromIssuerLocation(issuerUri) as NimbusReactiveJwtDecoder |
|
val audienceValidator: OAuth2TokenValidator<Jwt> = AudienceValidator() |
|
val withIssuer: OAuth2TokenValidator<Jwt> = JwtValidators.createDefaultWithIssuer(issuerUri) |
|
val withAudience: OAuth2TokenValidator<Jwt> = DelegatingOAuth2TokenValidator(withIssuer, audienceValidator) |
|
jwtDecoder.setJwtValidator(withAudience) |
|
return jwtDecoder |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-opaque-minimaldependencies]] |
|
=== Minimal Dependencies for Introspection |
|
As described in xref:servlet/oauth2/oauth2-resourceserver.adoc#oauth2resourceserver-jwt-minimaldependencies[Minimal Dependencies for JWT] most of Resource Server support is collected in `spring-security-oauth2-resource-server`. |
|
However unless a custom <<webflux-oauth2resourceserver-opaque-introspector-bean,`ReactiveOpaqueTokenIntrospector`>> is provided, the Resource Server will fallback to ReactiveOpaqueTokenIntrospector. |
|
Meaning that both `spring-security-oauth2-resource-server` and `oauth2-oidc-sdk` are necessary in order to have a working minimal Resource Server that supports opaque Bearer Tokens. |
|
Please refer to `spring-security-oauth2-resource-server` in order to determin the correct version for `oauth2-oidc-sdk`. |
|
|
|
[[webflux-oauth2resourceserver-opaque-minimalconfiguration]] |
|
=== Minimal Configuration for Introspection |
|
|
|
Typically, an opaque token can be verified via an https://tools.ietf.org/html/rfc7662[OAuth 2.0 Introspection Endpoint], hosted by the authorization server. |
|
This can be handy when revocation is a requirement. |
|
|
|
When using https://spring.io/projects/spring-boot[Spring Boot], configuring an application as a resource server that uses introspection consists of two basic steps. |
|
First, include the needed dependencies and second, indicate the introspection endpoint details. |
|
|
|
[[webflux-oauth2resourceserver-opaque-introspectionuri]] |
|
==== Specifying the Authorization Server |
|
|
|
To specify where the introspection endpoint is, simply do: |
|
|
|
[source,yaml] |
|
---- |
|
security: |
|
oauth2: |
|
resourceserver: |
|
opaque-token: |
|
introspection-uri: https://idp.example.com/introspect |
|
client-id: client |
|
client-secret: secret |
|
---- |
|
|
|
Where `https://idp.example.com/introspect` is the introspection endpoint hosted by your authorization server and `client-id` and `client-secret` are the credentials needed to hit that endpoint. |
|
|
|
Resource Server will use these properties to further self-configure and subsequently validate incoming JWTs. |
|
|
|
[NOTE] |
|
When using introspection, the authorization server's word is the law. |
|
If the authorization server responses that the token is valid, then it is. |
|
|
|
And that's it! |
|
|
|
==== Startup Expectations |
|
|
|
When this property and these dependencies are used, Resource Server will automatically configure itself to validate Opaque Bearer Tokens. |
|
|
|
This startup process is quite a bit simpler than for JWTs since no endpoints need to be discovered and no additional validation rules get added. |
|
|
|
==== Runtime Expectations |
|
|
|
Once the application is started up, Resource Server will attempt to process any request containing an `Authorization: Bearer` header: |
|
|
|
```http |
|
GET / HTTP/1.1 |
|
Authorization: Bearer some-token-value # Resource Server will process this |
|
``` |
|
|
|
So long as this scheme is indicated, Resource Server will attempt to process the request according to the Bearer Token specification. |
|
|
|
Given an Opaque Token, Resource Server will |
|
|
|
1. Query the provided introspection endpoint using the provided credentials and the token |
|
2. Inspect the response for an `{ 'active' : true }` attribute |
|
3. Map each scope to an authority with the prefix `SCOPE_` |
|
|
|
The resulting `Authentication#getPrincipal`, by default, is a Spring Security `{security-api-url}org/springframework/security/oauth2/core/OAuth2AuthenticatedPrincipal.html[OAuth2AuthenticatedPrincipal]` object, and `Authentication#getName` maps to the token's `sub` property, if one is present. |
|
|
|
From here, you may want to jump to: |
|
|
|
* <<webflux-oauth2resourceserver-opaque-attributes,Looking Up Attributes Post-Authentication>> |
|
* <<webflux-oauth2resourceserver-opaque-authorization-extraction,Extracting Authorities Manually>> |
|
* <<webflux-oauth2resourceserver-opaque-jwt-introspector,Using Introspection with JWTs>> |
|
|
|
[[webflux-oauth2resourceserver-opaque-attributes]] |
|
=== Looking Up Attributes Post-Authentication |
|
|
|
Once a token is authenticated, an instance of `BearerTokenAuthentication` is set in the `SecurityContext`. |
|
|
|
This means that it's available in `@Controller` methods when using `@EnableWebFlux` in your configuration: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@GetMapping("/foo") |
|
public Mono<String> foo(BearerTokenAuthentication authentication) { |
|
return Mono.just(authentication.getTokenAttributes().get("sub") + " is the subject"); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@GetMapping("/foo") |
|
fun foo(authentication: BearerTokenAuthentication): Mono<String> { |
|
return Mono.just(authentication.tokenAttributes["sub"].toString() + " is the subject") |
|
} |
|
---- |
|
==== |
|
|
|
Since `BearerTokenAuthentication` holds an `OAuth2AuthenticatedPrincipal`, that also means that it's available to controller methods, too: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@GetMapping("/foo") |
|
public Mono<String> foo(@AuthenticationPrincipal OAuth2AuthenticatedPrincipal principal) { |
|
return Mono.just(principal.getAttribute("sub") + " is the subject"); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@GetMapping("/foo") |
|
fun foo(@AuthenticationPrincipal principal: OAuth2AuthenticatedPrincipal): Mono<String> { |
|
return Mono.just(principal.getAttribute<Any>("sub").toString() + " is the subject") |
|
} |
|
---- |
|
==== |
|
|
|
==== Looking Up Attributes Via SpEL |
|
|
|
Of course, this also means that attributes can be accessed via SpEL. |
|
|
|
For example, if using `@EnableReactiveMethodSecurity` so that you can use `@PreAuthorize` annotations, you can do: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@PreAuthorize("principal?.attributes['sub'] == 'foo'") |
|
public Mono<String> forFoosEyesOnly() { |
|
return Mono.just("foo"); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@PreAuthorize("principal.attributes['sub'] == 'foo'") |
|
fun forFoosEyesOnly(): Mono<String> { |
|
return Mono.just("foo") |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-opaque-sansboot]] |
|
=== Overriding or Replacing Boot Auto Configuration |
|
|
|
There are two ``@Bean``s that Spring Boot generates on Resource Server's behalf. |
|
|
|
The first is a `SecurityWebFilterChain` that configures the app as a resource server. |
|
When use Opaque Token, this `SecurityWebFilterChain` looks like: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(ServerHttpSecurity.OAuth2ResourceServerSpec::opaqueToken) |
|
return http.build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
opaqueToken { } |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
If the application doesn't expose a `SecurityWebFilterChain` bean, then Spring Boot will expose the above default one. |
|
|
|
Replacing this is as simple as exposing the bean within the application: |
|
|
|
.Replacing SecurityWebFilterChain |
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@EnableWebFluxSecurity |
|
public class MyCustomSecurityConfiguration { |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.pathMatchers("/messages/**").hasAuthority("SCOPE_message:read") |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(oauth2 -> oauth2 |
|
.opaqueToken(opaqueToken -> opaqueToken |
|
.introspector(myIntrospector()) |
|
) |
|
); |
|
return http.build(); |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize("/messages/**", hasAuthority("SCOPE_message:read")) |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
opaqueToken { |
|
introspector = myIntrospector() |
|
} |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
The above requires the scope of `message:read` for any URL that starts with `/messages/`. |
|
|
|
Methods on the `oauth2ResourceServer` DSL will also override or replace auto configuration. |
|
|
|
For example, the second `@Bean` Spring Boot creates is a `ReactiveOpaqueTokenIntrospector`, which decodes `String` tokens into validated instances of `OAuth2AuthenticatedPrincipal`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
public ReactiveOpaqueTokenIntrospector introspector() { |
|
return new NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun introspector(): ReactiveOpaqueTokenIntrospector { |
|
return NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret) |
|
} |
|
---- |
|
==== |
|
|
|
If the application doesn't expose a `ReactiveOpaqueTokenIntrospector` bean, then Spring Boot will expose the above default one. |
|
|
|
And its configuration can be overridden using `introspectionUri()` and `introspectionClientCredentials()` or replaced using `introspector()`. |
|
|
|
[[webflux-oauth2resourceserver-opaque-introspectionuri-dsl]] |
|
==== Using `introspectionUri()` |
|
|
|
An authorization server's Introspection Uri can be configured <<webflux-oauth2resourceserver-opaque-introspectionuri,as a configuration property>> or it can be supplied in the DSL: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@EnableWebFluxSecurity |
|
public class DirectlyConfiguredIntrospectionUri { |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(oauth2 -> oauth2 |
|
.opaqueToken(opaqueToken -> opaqueToken |
|
.introspectionUri("https://idp.example.com/introspect") |
|
.introspectionClientCredentials("client", "secret") |
|
) |
|
); |
|
return http.build(); |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
opaqueToken { |
|
introspectionUri = "https://idp.example.com/introspect" |
|
introspectionClientCredentials("client", "secret") |
|
} |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
Using `introspectionUri()` takes precedence over any configuration property. |
|
|
|
[[webflux-oauth2resourceserver-opaque-introspector-dsl]] |
|
==== Using `introspector()` |
|
|
|
More powerful than `introspectionUri()` is `introspector()`, which will completely replace any Boot auto configuration of `ReactiveOpaqueTokenIntrospector`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@EnableWebFluxSecurity |
|
public class DirectlyConfiguredIntrospector { |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(oauth2 -> oauth2 |
|
.opaqueToken(opaqueToken -> opaqueToken |
|
.introspector(myCustomIntrospector()) |
|
) |
|
); |
|
return http.build(); |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
opaqueToken { |
|
introspector = myCustomIntrospector() |
|
} |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
This is handy when deeper configuration, like <<webflux-oauth2resourceserver-opaque-authorization-extraction,authority mapping>>or <<webflux-oauth2resourceserver-opaque-jwt-introspector,JWT revocation>> is necessary. |
|
|
|
[[webflux-oauth2resourceserver-opaque-introspector-bean]] |
|
==== Exposing a `ReactiveOpaqueTokenIntrospector` `@Bean` |
|
|
|
Or, exposing a `ReactiveOpaqueTokenIntrospector` `@Bean` has the same effect as `introspector()`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
public ReactiveOpaqueTokenIntrospector introspector() { |
|
return new NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun introspector(): ReactiveOpaqueTokenIntrospector { |
|
return NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret) |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-opaque-authorization]] |
|
=== Configuring Authorization |
|
|
|
An OAuth 2.0 Introspection endpoint will typically return a `scope` attribute, indicating the scopes (or authorities) it's been granted, for example: |
|
|
|
`{ ..., "scope" : "messages contacts"}` |
|
|
|
When this is the case, Resource Server will attempt to coerce these scopes into a list of granted authorities, prefixing each scope with the string "SCOPE_". |
|
|
|
This means that to protect an endpoint or method with a scope derived from an Opaque Token, the corresponding expressions should include this prefix: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@EnableWebFluxSecurity |
|
public class MappedAuthorities { |
|
@Bean |
|
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) { |
|
http |
|
.authorizeExchange(exchange -> exchange |
|
.pathMatchers("/contacts/**").hasAuthority("SCOPE_contacts") |
|
.pathMatchers("/messages/**").hasAuthority("SCOPE_messages") |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(ServerHttpSecurity.OAuth2ResourceServerSpec::opaqueToken); |
|
return http.build(); |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain { |
|
return http { |
|
authorizeExchange { |
|
authorize("/contacts/**", hasAuthority("SCOPE_contacts")) |
|
authorize("/messages/**", hasAuthority("SCOPE_messages")) |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
opaqueToken { } |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
Or similarly with method security: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@PreAuthorize("hasAuthority('SCOPE_messages')") |
|
public Flux<Message> getMessages(...) {} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@PreAuthorize("hasAuthority('SCOPE_messages')") |
|
fun getMessages(): Flux<Message> { } |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-opaque-authorization-extraction]] |
|
==== Extracting Authorities Manually |
|
|
|
By default, Opaque Token support will extract the scope claim from an introspection response and parse it into individual `GrantedAuthority` instances. |
|
|
|
For example, if the introspection response were: |
|
|
|
[source,json] |
|
---- |
|
{ |
|
"active" : true, |
|
"scope" : "message:read message:write" |
|
} |
|
---- |
|
|
|
Then Resource Server would generate an `Authentication` with two authorities, one for `message:read` and the other for `message:write`. |
|
|
|
This can, of course, be customized using a custom `ReactiveOpaqueTokenIntrospector` that takes a look at the attribute set and converts in its own way: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
public class CustomAuthoritiesOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector { |
|
private ReactiveOpaqueTokenIntrospector delegate = |
|
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret"); |
|
|
|
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) { |
|
return this.delegate.introspect(token) |
|
.map(principal -> new DefaultOAuth2AuthenticatedPrincipal( |
|
principal.getName(), principal.getAttributes(), extractAuthorities(principal))); |
|
} |
|
|
|
private Collection<GrantedAuthority> extractAuthorities(OAuth2AuthenticatedPrincipal principal) { |
|
List<String> scopes = principal.getAttribute(OAuth2IntrospectionClaimNames.SCOPE); |
|
return scopes.stream() |
|
.map(SimpleGrantedAuthority::new) |
|
.collect(Collectors.toList()); |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
class CustomAuthoritiesOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector { |
|
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret") |
|
override fun introspect(token: String): Mono<OAuth2AuthenticatedPrincipal> { |
|
return delegate.introspect(token) |
|
.map { principal: OAuth2AuthenticatedPrincipal -> |
|
DefaultOAuth2AuthenticatedPrincipal( |
|
principal.name, principal.attributes, extractAuthorities(principal)) |
|
} |
|
} |
|
|
|
private fun extractAuthorities(principal: OAuth2AuthenticatedPrincipal): Collection<GrantedAuthority> { |
|
val scopes = principal.getAttribute<List<String>>(OAuth2IntrospectionClaimNames.SCOPE) |
|
return scopes |
|
.map { SimpleGrantedAuthority(it) } |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
Thereafter, this custom introspector can be configured simply by exposing it as a `@Bean`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
public ReactiveOpaqueTokenIntrospector introspector() { |
|
return new CustomAuthoritiesOpaqueTokenIntrospector(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun introspector(): ReactiveOpaqueTokenIntrospector { |
|
return CustomAuthoritiesOpaqueTokenIntrospector() |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-opaque-jwt-introspector]] |
|
=== Using Introspection with JWTs |
|
|
|
A common question is whether or not introspection is compatible with JWTs. |
|
Spring Security's Opaque Token support has been designed to not care about the format of the token -- it will gladly pass any token to the introspection endpoint provided. |
|
|
|
So, let's say that you've got a requirement that requires you to check with the authorization server on each request, in case the JWT has been revoked. |
|
|
|
Even though you are using the JWT format for the token, your validation method is introspection, meaning you'd want to do: |
|
|
|
[source,yaml] |
|
---- |
|
spring: |
|
security: |
|
oauth2: |
|
resourceserver: |
|
opaque-token: |
|
introspection-uri: https://idp.example.org/introspection |
|
client-id: client |
|
client-secret: secret |
|
---- |
|
|
|
In this case, the resulting `Authentication` would be `BearerTokenAuthentication`. |
|
Any attributes in the corresponding `OAuth2AuthenticatedPrincipal` would be whatever was returned by the introspection endpoint. |
|
|
|
But, let's say that, oddly enough, the introspection endpoint only returns whether or not the token is active. |
|
Now what? |
|
|
|
In this case, you can create a custom `ReactiveOpaqueTokenIntrospector` that still hits the endpoint, but then updates the returned principal to have the JWTs claims as the attributes: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
public class JwtOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector { |
|
private ReactiveOpaqueTokenIntrospector delegate = |
|
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret"); |
|
private ReactiveJwtDecoder jwtDecoder = new NimbusReactiveJwtDecoder(new ParseOnlyJWTProcessor()); |
|
|
|
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) { |
|
return this.delegate.introspect(token) |
|
.flatMap(principal -> this.jwtDecoder.decode(token)) |
|
.map(jwt -> new DefaultOAuth2AuthenticatedPrincipal(jwt.getClaims(), NO_AUTHORITIES)); |
|
} |
|
|
|
private static class ParseOnlyJWTProcessor implements Converter<JWT, Mono<JWTClaimsSet>> { |
|
public Mono<JWTClaimsSet> convert(JWT jwt) { |
|
try { |
|
return Mono.just(jwt.getJWTClaimsSet()); |
|
} catch (Exception ex) { |
|
return Mono.error(ex); |
|
} |
|
} |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
class JwtOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector { |
|
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret") |
|
private val jwtDecoder: ReactiveJwtDecoder = NimbusReactiveJwtDecoder(ParseOnlyJWTProcessor()) |
|
override fun introspect(token: String): Mono<OAuth2AuthenticatedPrincipal> { |
|
return delegate.introspect(token) |
|
.flatMap { jwtDecoder.decode(token) } |
|
.map { jwt: Jwt -> DefaultOAuth2AuthenticatedPrincipal(jwt.claims, NO_AUTHORITIES) } |
|
} |
|
|
|
private class ParseOnlyJWTProcessor : Converter<JWT, Mono<JWTClaimsSet>> { |
|
override fun convert(jwt: JWT): Mono<JWTClaimsSet> { |
|
return try { |
|
Mono.just(jwt.jwtClaimsSet) |
|
} catch (e: Exception) { |
|
Mono.error(e) |
|
} |
|
} |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
Thereafter, this custom introspector can be configured simply by exposing it as a `@Bean`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
public ReactiveOpaqueTokenIntrospector introspector() { |
|
return new JwtOpaqueTokenIntropsector(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun introspector(): ReactiveOpaqueTokenIntrospector { |
|
return JwtOpaqueTokenIntrospector() |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-opaque-userinfo]] |
|
=== Calling a `/userinfo` Endpoint |
|
|
|
Generally speaking, a Resource Server doesn't care about the underlying user, but instead about the authorities that have been granted. |
|
|
|
That said, at times it can be valuable to tie the authorization statement back to a user. |
|
|
|
If an application is also using `spring-security-oauth2-client`, having set up the appropriate `ClientRegistrationRepository`, then this is quite simple with a custom `OpaqueTokenIntrospector`. |
|
This implementation below does three things: |
|
|
|
* Delegates to the introspection endpoint, to affirm the token's validity |
|
* Looks up the appropriate client registration associated with the `/userinfo` endpoint |
|
* Invokes and returns the response from the `/userinfo` endpoint |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
public class UserInfoOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector { |
|
private final ReactiveOpaqueTokenIntrospector delegate = |
|
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret"); |
|
private final ReactiveOAuth2UserService<OAuth2UserRequest, OAuth2User> oauth2UserService = |
|
new DefaultReactiveOAuth2UserService(); |
|
|
|
private final ReactiveClientRegistrationRepository repository; |
|
|
|
// ... constructor |
|
|
|
@Override |
|
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) { |
|
return Mono.zip(this.delegate.introspect(token), this.repository.findByRegistrationId("registration-id")) |
|
.map(t -> { |
|
OAuth2AuthenticatedPrincipal authorized = t.getT1(); |
|
ClientRegistration clientRegistration = t.getT2(); |
|
Instant issuedAt = authorized.getAttribute(ISSUED_AT); |
|
Instant expiresAt = authorized.getAttribute(OAuth2IntrospectionClaimNames.EXPIRES_AT); |
|
OAuth2AccessToken accessToken = new OAuth2AccessToken(BEARER, token, issuedAt, expiresAt); |
|
return new OAuth2UserRequest(clientRegistration, accessToken); |
|
}) |
|
.flatMap(this.oauth2UserService::loadUser); |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
class UserInfoOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector { |
|
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret") |
|
private val oauth2UserService: ReactiveOAuth2UserService<OAuth2UserRequest, OAuth2User> = DefaultReactiveOAuth2UserService() |
|
private val repository: ReactiveClientRegistrationRepository? = null |
|
|
|
// ... constructor |
|
override fun introspect(token: String?): Mono<OAuth2AuthenticatedPrincipal> { |
|
return Mono.zip<OAuth2AuthenticatedPrincipal, ClientRegistration>(delegate.introspect(token), repository!!.findByRegistrationId("registration-id")) |
|
.map<OAuth2UserRequest> { t: Tuple2<OAuth2AuthenticatedPrincipal, ClientRegistration> -> |
|
val authorized = t.t1 |
|
val clientRegistration = t.t2 |
|
val issuedAt: Instant? = authorized.getAttribute(ISSUED_AT) |
|
val expiresAt: Instant? = authorized.getAttribute(OAuth2IntrospectionClaimNames.EXPIRES_AT) |
|
val accessToken = OAuth2AccessToken(BEARER, token, issuedAt, expiresAt) |
|
OAuth2UserRequest(clientRegistration, accessToken) |
|
} |
|
.flatMap { userRequest: OAuth2UserRequest -> oauth2UserService.loadUser(userRequest) } |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
If you aren't using `spring-security-oauth2-client`, it's still quite simple. |
|
You will simply need to invoke the `/userinfo` with your own instance of `WebClient`: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
public class UserInfoOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector { |
|
private final ReactiveOpaqueTokenIntrospector delegate = |
|
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret"); |
|
private final WebClient rest = WebClient.create(); |
|
|
|
@Override |
|
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) { |
|
return this.delegate.introspect(token) |
|
.map(this::makeUserInfoRequest); |
|
} |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
class UserInfoOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector { |
|
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret") |
|
private val rest: WebClient = WebClient.create() |
|
|
|
override fun introspect(token: String): Mono<OAuth2AuthenticatedPrincipal> { |
|
return delegate.introspect(token) |
|
.map(this::makeUserInfoRequest) |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
Either way, having created your `ReactiveOpaqueTokenIntrospector`, you should publish it as a `@Bean` to override the defaults: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
ReactiveOpaqueTokenIntrospector introspector() { |
|
return new UserInfoOpaqueTokenIntrospector(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun introspector(): ReactiveOpaqueTokenIntrospector { |
|
return UserInfoOpaqueTokenIntrospector() |
|
} |
|
---- |
|
==== |
|
|
|
[[webflux-oauth2resourceserver-multitenancy]] |
|
== Multi-tenancy |
|
|
|
A resource server is considered multi-tenant when there are multiple strategies for verifying a bearer token, keyed by some tenant identifier. |
|
|
|
For example, your resource server may accept bearer tokens from two different authorization servers. |
|
Or, your authorization server may represent a multiplicity of issuers. |
|
|
|
In each case, there are two things that need to be done and trade-offs associated with how you choose to do them: |
|
|
|
1. Resolve the tenant |
|
2. Propagate the tenant |
|
|
|
=== Resolving the Tenant By Claim |
|
|
|
One way to differentiate tenants is by the issuer claim. Since the issuer claim accompanies signed JWTs, this can be done with the `JwtIssuerReactiveAuthenticationManagerResolver`, like so: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
JwtIssuerReactiveAuthenticationManagerResolver authenticationManagerResolver = new JwtIssuerReactiveAuthenticationManagerResolver |
|
("https://idp.example.org/issuerOne", "https://idp.example.org/issuerTwo"); |
|
|
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(oauth2 -> oauth2 |
|
.authenticationManagerResolver(authenticationManagerResolver) |
|
); |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
val customAuthenticationManagerResolver = JwtIssuerReactiveAuthenticationManagerResolver("https://idp.example.org/issuerOne", "https://idp.example.org/issuerTwo") |
|
|
|
return http { |
|
authorizeExchange { |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
authenticationManagerResolver = customAuthenticationManagerResolver |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
This is nice because the issuer endpoints are loaded lazily. |
|
In fact, the corresponding `JwtReactiveAuthenticationManager` is instantiated only when the first request with the corresponding issuer is sent. |
|
This allows for an application startup that is independent from those authorization servers being up and available. |
|
|
|
==== Dynamic Tenants |
|
|
|
Of course, you may not want to restart the application each time a new tenant is added. |
|
In this case, you can configure the `JwtIssuerReactiveAuthenticationManagerResolver` with a repository of `ReactiveAuthenticationManager` instances, which you can edit at runtime, like so: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
private Mono<ReactiveAuthenticationManager> addManager( |
|
Map<String, ReactiveAuthenticationManager> authenticationManagers, String issuer) { |
|
|
|
return Mono.fromCallable(() -> ReactiveJwtDecoders.fromIssuerLocation(issuer)) |
|
.subscribeOn(Schedulers.boundedElastic()) |
|
.map(JwtReactiveAuthenticationManager::new) |
|
.doOnNext(authenticationManager -> authenticationManagers.put(issuer, authenticationManager)); |
|
} |
|
|
|
// ... |
|
|
|
JwtIssuerReactiveAuthenticationManagerResolver authenticationManagerResolver = |
|
new JwtIssuerReactiveAuthenticationManagerResolver(authenticationManagers::get); |
|
|
|
http |
|
.authorizeExchange(exchanges -> exchanges |
|
.anyExchange().authenticated() |
|
) |
|
.oauth2ResourceServer(oauth2 -> oauth2 |
|
.authenticationManagerResolver(authenticationManagerResolver) |
|
); |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
private fun addManager( |
|
authenticationManagers: MutableMap<String, ReactiveAuthenticationManager>, issuer: String): Mono<JwtReactiveAuthenticationManager> { |
|
return Mono.fromCallable { ReactiveJwtDecoders.fromIssuerLocation(issuer) } |
|
.subscribeOn(Schedulers.boundedElastic()) |
|
.map { jwtDecoder: ReactiveJwtDecoder -> JwtReactiveAuthenticationManager(jwtDecoder) } |
|
.doOnNext { authenticationManager: JwtReactiveAuthenticationManager -> authenticationManagers[issuer] = authenticationManager } |
|
} |
|
|
|
// ... |
|
|
|
var customAuthenticationManagerResolver = JwtIssuerReactiveAuthenticationManagerResolver(authenticationManagers::get) |
|
return http { |
|
authorizeExchange { |
|
authorize(anyExchange, authenticated) |
|
} |
|
oauth2ResourceServer { |
|
authenticationManagerResolver = customAuthenticationManagerResolver |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
In this case, you construct `JwtIssuerReactiveAuthenticationManagerResolver` with a strategy for obtaining the `ReactiveAuthenticationManager` given the issuer. |
|
This approach allows us to add and remove elements from the repository (shown as a `Map` in the snippet) at runtime. |
|
|
|
NOTE: It would be unsafe to simply take any issuer and construct an `ReactiveAuthenticationManager` from it. |
|
The issuer should be one that the code can verify from a trusted source like an allowed list of issuers. |
|
|
|
[[webflux-oauth2resourceserver-bearertoken-resolver]] |
|
== Bearer Token Resolution |
|
|
|
By default, Resource Server looks for a bearer token in the `Authorization` header. |
|
This, however, can be customized. |
|
|
|
For example, you may have a need to read the bearer token from a custom header. |
|
To achieve this, you can wire an instance of `ServerBearerTokenAuthenticationConverter` into the DSL, as you can see in the following example: |
|
|
|
.Custom Bearer Token Header |
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
ServerBearerTokenAuthenticationConverter converter = new ServerBearerTokenAuthenticationConverter(); |
|
converter.setBearerTokenHeaderName(HttpHeaders.PROXY_AUTHORIZATION); |
|
http |
|
.oauth2ResourceServer(oauth2 -> oauth2 |
|
.bearerTokenConverter(converter) |
|
); |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
val converter = ServerBearerTokenAuthenticationConverter() |
|
converter.setBearerTokenHeaderName(HttpHeaders.PROXY_AUTHORIZATION) |
|
return http { |
|
oauth2ResourceServer { |
|
bearerTokenConverter = converter |
|
} |
|
} |
|
---- |
|
==== |
|
|
|
== Bearer Token Propagation |
|
|
|
Now that you're in possession of a bearer token, it might be handy to pass that to downstream services. |
|
This is quite simple with `{security-api-url}org/springframework/security/oauth2/server/resource/web/reactive/function/client/ServerBearerExchangeFilterFunction.html[ServerBearerExchangeFilterFunction]`, which you can see in the following example: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
@Bean |
|
public WebClient rest() { |
|
return WebClient.builder() |
|
.filter(new ServerBearerExchangeFilterFunction()) |
|
.build(); |
|
} |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
@Bean |
|
fun rest(): WebClient { |
|
return WebClient.builder() |
|
.filter(ServerBearerExchangeFilterFunction()) |
|
.build() |
|
} |
|
---- |
|
==== |
|
|
|
When the above `WebClient` is used to perform requests, Spring Security will look up the current `Authentication` and extract any `{security-api-url}org/springframework/security/oauth2/core/AbstractOAuth2Token.html[AbstractOAuth2Token]` credential. |
|
Then, it will propagate that token in the `Authorization` header. |
|
|
|
For example: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
this.rest.get() |
|
.uri("https://other-service.example.com/endpoint") |
|
.retrieve() |
|
.bodyToMono(String.class) |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
this.rest.get() |
|
.uri("https://other-service.example.com/endpoint") |
|
.retrieve() |
|
.bodyToMono<String>() |
|
---- |
|
==== |
|
|
|
Will invoke the `https://other-service.example.com/endpoint`, adding the bearer token `Authorization` header for you. |
|
|
|
In places where you need to override this behavior, it's a simple matter of supplying the header yourself, like so: |
|
|
|
==== |
|
.Java |
|
[source,java,role="primary"] |
|
---- |
|
this.rest.get() |
|
.uri("https://other-service.example.com/endpoint") |
|
.headers(headers -> headers.setBearerAuth(overridingToken)) |
|
.retrieve() |
|
.bodyToMono(String.class) |
|
---- |
|
|
|
.Kotlin |
|
[source,kotlin,role="secondary"] |
|
---- |
|
rest.get() |
|
.uri("https://other-service.example.com/endpoint") |
|
.headers { it.setBearerAuth(overridingToken) } |
|
.retrieve() |
|
.bodyToMono<String>() |
|
---- |
|
==== |
|
|
|
In this case, the filter will fall back and simply forward the request onto the rest of the web filter chain. |
|
|
|
[NOTE] |
|
Unlike the https://docs.spring.io/spring-security/site/docs/current-SNAPSHOT/api/org/springframework/security/oauth2/client/web/reactive/function/client/ServerOAuth2AuthorizedClientExchangeFilterFunction.html[OAuth 2.0 Client filter function], this filter function makes no attempt to renew the token, should it be expired. |
|
To obtain this level of support, please use the OAuth 2.0 Client filter.
|
|
|