Spring Framework
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

3767 lines
180 KiB

<?xml version="1.0" encoding="UTF-8"?>
<chapter version="5.0"
xsi:schemaLocation="http://docbook.org/ns/docbook http://www.docbook.org/xml/5.0/xsd/docbook.xsd http://www.w3.org/1999/xlink http://www.docbook.org/xml/5.0/xsd/xlink.xsd"
xml:id="testing" xmlns="http://docbook.org/ns/docbook"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xl="http://www.w3.org/1999/xlink"
xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns:ns2="http://www.w3.org/1998/Math/MathML"
xmlns:ns="http://docbook.org/ns/docbook">
<title>Testing</title>
<section xml:id="testing-introduction">
<title>Introduction to Spring Testing</title>
<para>Testing is an integral part of enterprise software development. This
chapter focuses on the value-add of the IoC principle to <link
linkend="unit-testing">unit testing</link> and on the benefits of the Spring
Framework's support for <link linkend="integration-testing">integration
testing</link>. <emphasis>(A thorough treatment of testing in the enterprise
is beyond the scope of this reference manual.)</emphasis></para>
</section>
<section xml:id="unit-testing">
<title>Unit Testing</title>
<para>Dependency Injection should make your code less dependent on the
container than it would be with traditional Java EE development. The POJOs
that make up your application should be testable in JUnit or TestNG tests,
with objects simply instantiated using the <literal>new</literal> operator,
<emphasis>without Spring or any other container</emphasis>. You can use
<link linkend="mock-objects">mock objects</link> (in conjunction with other
valuable testing techniques) to test your code in isolation. If you follow
the architecture recommendations for Spring, the resulting clean layering
and componentization of your codebase will facilitate easier unit testing.
For example, you can test service layer objects by stubbing or mocking DAO
or Repository interfaces, without needing to access persistent data while
running unit tests.</para>
<para>True unit tests typically run extremely quickly, as there is no
runtime infrastructure to set up. Emphasizing true unit tests as part of
your development methodology will boost your productivity. You may not need
this section of the testing chapter to help you write effective unit tests
for your IoC-based applications. For certain unit testing scenarios,
however, the Spring Framework provides the following mock objects and
testing support classes.</para>
<section xml:id="mock-objects">
<title>Mock Objects</title>
<section xml:id="mock-objects-env">
<title>Environment</title>
<para>The <literal>org.springframework.mock.env</literal> package
contains mock implementations of the
<interfacename>Environment</interfacename> and
<interfacename>PropertySource</interfacename> abstractions introduced in
Spring 3.1 (see <xref linkend="new-in-3.1-environment-abstraction"/> and
<xref linkend="new-in-3.1-property-source-abstraction"/>).
<classname>MockEnvironment</classname> and
<classname>MockPropertySource</classname> are useful for developing
<emphasis>out-of-container</emphasis> tests for code that depends on
environment-specific properties.</para>
</section>
<section xml:id="mock-objects-jndi">
<title>JNDI</title>
<para>The <literal>org.springframework.mock.jndi</literal> package
contains an implementation of the JNDI SPI, which you can use to set up
a simple JNDI environment for test suites or stand-alone applications.
If, for example, JDBC <classname>DataSource</classname>s get bound to
the same JNDI names in test code as within a Java EE container, you can
reuse both application code and configuration in testing scenarios
without modification.</para>
</section>
<section xml:id="mock-objects-servlet">
<title>Servlet API</title>
<para>The <literal>org.springframework.mock.web</literal> package
contains a comprehensive set of Servlet API mock objects, targeted at
usage with Spring's Web MVC framework, which are useful for testing web
contexts and controllers. These mock objects are generally more
convenient to use than dynamic mock objects such as <link
xl:href="http://www.easymock.org">EasyMock</link> or existing Servlet
API mock objects such as <link
xl:href="http://www.mockobjects.com">MockObjects</link>.</para>
</section>
<section xml:id="mock-objects-portlet">
<title>Portlet API</title>
<para>The <literal>org.springframework.mock.web.portlet</literal>
package contains a set of Portlet API mock objects, targeted at usage
with Spring's Portlet MVC framework.</para>
</section>
</section>
<section xml:id="unit-testing-support-classes">
<title>Unit Testing support Classes</title>
<section xml:id="unit-testing-utilities">
<title>General utilities</title>
<para>The <literal>org.springframework.test.util</literal> package
contains <classname>ReflectionTestUtils</classname>, which is a
collection of reflection-based utility methods. Developers use these
methods in unit and integration testing scenarios in which they need to
set a non-<literal>public</literal> field or invoke a
non-<literal>public</literal> setter method when testing application
code involving, for example:</para>
<itemizedlist>
<listitem>
<para>ORM frameworks such as JPA and Hibernate that condone
<literal>private</literal> or <literal>protected</literal> field
access as opposed to <literal>public</literal> setter methods for
properties in a domain entity.</para>
</listitem>
<listitem>
<para>Spring's support for annotations such as
<interfacename>@Autowired</interfacename>,
<interfacename>@Inject</interfacename>, and
<interfacename>@Resource,</interfacename> which provides dependency
injection for <literal>private</literal> or
<literal>protected</literal> fields, setter methods, and
configuration methods.</para>
</listitem>
</itemizedlist>
</section>
<section xml:id="unit-testing-spring-mvc">
<title>Spring MVC</title>
<para>The <literal>org.springframework.test.web</literal> package
contains <classname>ModelAndViewAssert</classname>, which you can use in
combination with JUnit, TestNG, or any other testing framework for unit
tests dealing with Spring MVC <classname>ModelAndView</classname>
objects.</para>
<tip>
<title>Unit testing Spring MVC Controllers</title>
<para>To test your Spring MVC <literal>Controller</literal>s, use
<classname>ModelAndViewAssert</classname> combined with
<literal>MockHttpServletRequest</literal>,
<literal>MockHttpSession</literal>, and so on from the <link
linkend="mock-objects-servlet">
<literal>org.springframework.mock.web</literal></link> package.</para>
</tip>
</section>
</section>
</section>
<section xml:id="integration-testing">
<title>Integration Testing</title>
<section xml:id="integration-testing-overview">
<title>Overview</title>
<para>It is important to be able to perform some integration testing
without requiring deployment to your application server or connecting to
other enterprise infrastructure. This will enable you to test things such
as:</para>
<itemizedlist>
<listitem>
<para>The correct wiring of your Spring IoC container contexts.</para>
</listitem>
<listitem>
<para>Data access using JDBC or an ORM tool. This would include such
things as the correctness of SQL statements, Hibernate queries, JPA
entity mappings, etc.</para>
</listitem>
</itemizedlist>
<para>The Spring Framework provides first-class support for integration
testing in the <filename class="libraryfile">spring-test</filename>
module. The name of the actual JAR file might include the release version
and might also be in the long
<filename>org.springframework.test</filename> form, depending on where you
get it from (see the <link linkend="dependency-management">section on
Dependency Management</link> for an explanation). This library includes
the <literal>org.springframework.test</literal> package, which contains
valuable classes for integration testing with a Spring container. This
testing does not rely on an application server or other deployment
environment. Such tests are slower to run than unit tests but much faster
than the equivalent Cactus tests or remote tests that rely on deployment
to an application server.</para>
<para>In Spring 2.5 and later, unit and integration testing support is
provided in the form of the annotation-driven <link
linkend="testcontext-framework">Spring TestContext Framework</link>. The
TestContext framework is agnostic of the actual testing framework in use,
thus allowing instrumentation of tests in various environments including
JUnit, TestNG, and so on.</para>
<warning>
<title>JUnit 3.8 support is deprecated</title>
<para>As of Spring 3.0, the legacy JUnit 3.8 base class hierarchy (i.e.,
<classname>AbstractDependencyInjectionSpringContextTests</classname>,
<classname>AbstractTransactionalDataSourceSpringContextTests</classname>,
etc.) is officially deprecated and will be removed in a later release.
Any test classes based on this code should be migrated to the <link
linkend="testcontext-framework">Spring TestContext
Framework</link>.</para>
<para>As of Spring 3.1, the JUnit 3.8 base classes in the Spring
TestContext Framework (i.e.,
<classname>AbstractJUnit38SpringContextTests</classname> and
<classname>AbstractTransactionalJUnit38SpringContextTests</classname>)
and <interfacename>@ExpectedException</interfacename> have been
officially deprecated and will be removed in a later release. Any test
classes based on this code should be migrated to the JUnit 4 or TestNG
support provided by the <link linkend="testcontext-framework">Spring
TestContext Framework</link>. Similarly, any test methods annotated with
<interfacename>@ExpectedException</interfacename> should be modified to
use the built-in support for expected exceptions in JUnit and
TestNG.</para>
</warning>
</section>
<section xml:id="integration-testing-goals">
<title>Goals of Integration Testing</title>
<para>Spring's integration testing support has the following primary
goals:</para>
<itemizedlist>
<listitem>
<para>To manage <link linkend="testing-ctx-management">Spring IoC
container caching</link> between test execution.</para>
</listitem>
<listitem>
<para>To provide <link linkend="testing-fixture-di">Dependency
Injection of test fixture instances</link>.</para>
</listitem>
<listitem>
<para>To provide <link linkend="testing-tx">transaction
management</link> appropriate to integration testing.</para>
</listitem>
<listitem>
<para>To supply <link
linkend="testing-support-classes">Spring-specific base classes</link>
that assist developers in writing integration tests.</para>
</listitem>
</itemizedlist>
<para>The next few sections describe each goal and provide links to
implementation and configuration details.</para>
<section xml:id="testing-ctx-management">
<title>Context management and caching</title>
<para>The Spring TestContext Framework provides consistent loading of
Spring <classname>ApplicationContext</classname>s and
<classname>WebApplicationContext</classname>s as well as caching of
those contexts. Support for the caching of loaded contexts is important,
because startup time can become an issue — not because of the overhead
of Spring itself, but because the objects instantiated by the Spring
container take time to instantiate. For example, a project with 50 to
100 Hibernate mapping files might take 10 to 20 seconds to load the
mapping files, and incurring that cost before running every test in
every test fixture leads to slower overall test runs that reduce
developer productivity.</para>
<para>Test classes typically declare either an array of
<emphasis>resource locations</emphasis> for XML configuration metadata —
often in the classpath — or an array of <emphasis>annotated
classes</emphasis> that is used to configure the application. These
locations or classes are the same as or similar to those specified in
<literal>web.xml</literal> or other deployment configuration
files.</para>
<para>By default, once loaded, the configured
<interfacename>ApplicationContext</interfacename> is reused for each
test. Thus the setup cost is incurred only once per test suite, and
subsequent test execution is much faster. In this context, the term
<emphasis>test suite</emphasis> means all tests run in the same JVM —
for example, all tests run from an Ant, Maven, or Gradle build for a
given project or module. In the unlikely case that a test corrupts the
application context and requires reloading — for example, by modifying a
bean definition or the state of an application object — the TestContext
framework can be configured to reload the configuration and rebuild the
application context before executing the next test.</para>
<para>See <xref linkend="testcontext-ctx-management"/> and <xref
linkend="testcontext-ctx-management-caching"/> with the TestContext
framework.</para>
</section>
<section xml:id="testing-fixture-di">
<title>Dependency Injection of test fixtures</title>
<para>When the TestContext framework loads your application context, it
can optionally configure instances of your test classes via Dependency
Injection. This provides a convenient mechanism for setting up test
fixtures using preconfigured beans from your application context. A
strong benefit here is that you can reuse application contexts across
various testing scenarios (e.g., for configuring Spring-managed object
graphs, transactional proxies, <classname>DataSource</classname>s,
etc.), thus avoiding the need to duplicate complex test fixture setup
for individual test cases.</para>
<para>As an example, consider the scenario where we have a class,
<classname>HibernateTitleRepository</classname>, that implements data
access logic for a <classname>Title</classname> domain entity. We want
to write integration tests that test the following areas:</para>
<itemizedlist>
<listitem>
<para>The Spring configuration: basically, is everything related to
the configuration of the
<classname>HibernateTitleRepository</classname> bean correct and
present?</para>
</listitem>
<listitem>
<para>The Hibernate mapping file configuration: is everything mapped
correctly, and are the correct lazy-loading settings in
place?</para>
</listitem>
<listitem>
<para>The logic of the
<classname>HibernateTitleRepository</classname>: does the configured
instance of this class perform as anticipated?</para>
</listitem>
</itemizedlist>
<para>See dependency injection of test fixtures with the <link
linkend="testcontext-fixture-di">TestContext framework</link>.</para>
</section>
<section xml:id="testing-tx">
<title>Transaction management</title>
<para>One common issue in tests that access a real database is their
effect on the state of the persistence store. Even when you're using a
development database, changes to the state may affect future tests.
Also, many operations — such as inserting or modifying persistent data —
cannot be performed (or verified) outside a transaction.</para>
<para>The TestContext framework addresses this issue. By default, the
framework will create and roll back a transaction for each test. You
simply write code that can assume the existence of a transaction. If you
call transactionally proxied objects in your tests, they will behave
correctly, according to their configured transactional semantics. In
addition, if a test method deletes the contents of selected tables while
running within the transaction managed for the test, the transaction
will roll back by default, and the database will return to its state
prior to execution of the test. Transactional support is provided to a
test via a <classname>PlatformTransactionManager</classname> bean
defined in the test's application context.</para>
<para>If you want a transaction to commit — unusual, but occasionally
useful when you want a particular test to populate or modify the
database — the TestContext framework can be instructed to cause the
transaction to commit instead of roll back via the <link
linkend="integration-testing-annotations"><interfacename>@TransactionConfiguration</interfacename></link>
and <link
linkend="integration-testing-annotations"><interfacename>@Rollback</interfacename></link>
annotations.</para>
<para>See transaction management with the <link
linkend="testcontext-tx">TestContext framework</link>.</para>
</section>
<section xml:id="testing-support-classes">
<title>Support classes for integration testing</title>
<para>The Spring TestContext Framework provides several
<literal>abstract</literal> support classes that simplify the writing of
integration tests. These base test classes provide well-defined hooks
into the testing framework as well as convenient instance variables and
methods, which enable you to access:</para>
<itemizedlist>
<listitem>
<para>The <literal>ApplicationContext</literal>, for performing
explicit bean lookups or testing the state of the context as a
whole.</para>
</listitem>
<listitem>
<para>A <classname>JdbcTemplate</classname>, for executing SQL
statements to query the database. Such queries can be used to
confirm database state both <emphasis>prior to</emphasis> and
<emphasis>after</emphasis> execution of database-related application
code, and Spring ensures that such queries run in the scope of the
same transaction as the application code. When used in conjunction
with an ORM tool, be sure to avoid <link
linkend="testcontext-tx-false-positives">false
positives</link>.</para>
</listitem>
</itemizedlist>
<para>In addition, you may want to create your own custom,
application-wide superclass with instance variables and methods specific
to your project.</para>
<para>See support classes for the <link
linkend="testcontext-support-classes">TestContext
framework</link>.</para>
</section>
</section>
<section xml:id="integration-testing-support-jdbc">
<title>JDBC Testing Support</title>
<para>The <literal>org.springframework.test.jdbc</literal> package
contains <classname>JdbcTestUtils</classname>, which is a collection of
JDBC related utility functions intended to simplify standard database
testing scenarios. <emphasis>Note that <link
linkend="testcontext-support-classes-junit4"><classname>AbstractTransactionalJUnit4SpringContextTests</classname></link>
and <link
linkend="testcontext-support-classes-testng"><classname>AbstractTransactionalTestNGSpringContextTests</classname></link>
provide convenience methods which delegate to
<classname>JdbcTestUtils</classname> internally.</emphasis></para>
<para>The <literal>spring-jdbc</literal> module provides support for
configuring and launching an embedded database which can be used in
integration tests that interact with a database. For details, see <xref
linkend="jdbc-embedded-database-support"/> and <xref
linkend="jdbc-embedded-database-dao-testing"/>.</para>
</section>
<section xml:id="integration-testing-annotations">
<title>Annotations</title>
<section xml:id="integration-testing-annotations-spring">
<title>Spring Testing Annotations</title>
<para>The Spring Framework provides the following set of
<emphasis>Spring-specific</emphasis> annotations that you can use in
your unit and integration tests in conjunction with the TestContext
framework. Refer to the respective Javadoc for further information,
including default attribute values, attribute aliases, and so on.</para>
<itemizedlist>
<listitem>
<para><emphasis role="bold">
<interfacename>@ContextConfiguration</interfacename>
</emphasis></para>
<para>Defines class-level metadata that is used to determine how to
load and configure an
<interfacename>ApplicationContext</interfacename> for integration
tests. Specifically,
<interfacename>@ContextConfiguration</interfacename> declares
<emphasis>either</emphasis> the application context resource
<varname>locations</varname> <emphasis>or</emphasis> the annotated
<varname>classes</varname> that will be used to load the
context.</para>
<para>Resource locations are typically XML configuration files
located in the classpath; whereas, annotated classes are typically
<interfacename>@Configuration</interfacename> classes. However,
resource locations can also refer to files in the file system, and
annotated classes can be component classes, etc.</para>
<programlisting language="java"><emphasis role="bold">@ContextConfiguration</emphasis>("/test-config.xml")
public class XmlApplicationContextTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<programlisting language="java"><emphasis role="bold">@ContextConfiguration</emphasis>(<emphasis
role="bold">classes</emphasis> = TestConfig.class)
public class ConfigClassApplicationContextTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>As an alternative or in addition to declaring resource
locations or annotated classes,
<interfacename>@ContextConfiguration</interfacename> may be used to
declare <interfacename>ApplicationContextInitializer</interfacename>
classes.</para>
<programlisting language="java"><emphasis role="bold">@ContextConfiguration</emphasis>(<emphasis
role="bold">initializers</emphasis> = CustomContextIntializer.class)
public class ContextInitializerTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para><interfacename>@ContextConfiguration</interfacename> may
optionally be used to declare the
<interfacename>ContextLoader</interfacename> strategy as well. Note,
however, that you typically do not need to explicitly configure the
loader since the default loader supports either resource
<varname>locations</varname> or annotated <varname>classes</varname>
as well as <varname>initializers</varname>.</para>
<programlisting language="java"><emphasis role="bold">@ContextConfiguration</emphasis>(<emphasis
role="bold">locations</emphasis> = "/test-context.xml", <emphasis
role="bold">loader</emphasis> = CustomContextLoader.class)
public class CustomLoaderXmlApplicationContextTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<note>
<para><interfacename>@ContextConfiguration</interfacename>
provides support for <emphasis>inheriting</emphasis> resource
locations or configuration classes as well as context initializers
declared by superclasses by default.</para>
</note>
<para>See <xref linkend="testcontext-ctx-management"/> and the
Javadoc for <interfacename>@ContextConfiguration</interfacename> for
further details.</para>
</listitem>
<listitem>
<para><emphasis
role="bold"><interfacename>@WebAppConfiguration</interfacename></emphasis></para>
<para>A class-level annotation that is used to declare that the
<interfacename>ApplicationContext</interfacename> loaded for an
integration test should be a
<interfacename>WebApplicationContext</interfacename>. The mere
presence of <interfacename>@WebAppConfiguration</interfacename> on a
test class ensures that a
<interfacename>WebApplicationContext</interfacename> will be loaded
for the test, using the default value of
<literal>"file:src/main/webapp"</literal> for the path to the root
of the web application (i.e., the <emphasis>resource base
path</emphasis>). The resource base path is used behind the scenes
to create a <classname>MockServletContext</classname> which serves
as the <interfacename>ServletContext</interfacename> for the test's
<interfacename>WebApplicationContext</interfacename>.</para>
<programlisting language="java">@ContextConfiguration
<emphasis role="bold">@WebAppConfiguration</emphasis>
public class WebAppTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>To override the default, specify a different base resource
path via the <emphasis>implicit</emphasis>
<interfacename>value</interfacename> attribute. Both
<literal>classpath:</literal> and <literal>file:</literal> resource
prefixes are supported. If no resource prefix is supplied the path
is assumed to be a file system resource.</para>
<programlisting language="java">@ContextConfiguration
<emphasis role="bold">@WebAppConfiguration("classpath:test-web-resources")</emphasis>
public class WebAppTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>Note that <interfacename>@WebAppConfiguration</interfacename>
must be used in conjunction with
<interfacename>@ContextConfiguration</interfacename>, either within
a single test class or within a test class hierarchy. See the
Javadoc for <interfacename>@WebAppConfiguration</interfacename> for
further details.</para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@ContextHierarchy</interfacename></emphasis></para>
<para>A class-level annotation that is used to define a hierarchy of
<interfacename>ApplicationContext</interfacename>s for integration
tests. <interfacename>@ContextHierarchy</interfacename> should be
declared with a list of one or more
<interfacename>@ContextConfiguration</interfacename> instances, each
of which defines a level in the context hierarchy. The following
examples demonstrate the use of
<interfacename>@ContextHierarchy</interfacename> within a single
test class; however,
<interfacename>@ContextHierarchy</interfacename> can also be used
within a test class hierarchy.</para>
<programlisting language="java">@ContextHierarchy({
@ContextConfiguration("/parent-config.xml"),
@ContextConfiguration("/child-config.xml")
})
public class ContextHierarchyTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<programlisting language="java">@WebAppConfiguration
@ContextHierarchy({
@ContextConfiguration(classes = AppConfig.class),
@ContextConfiguration(classes = WebConfig.class)
})
public class WebIntegrationTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>If you need to merge or override the configuration for a given
level of the context hierarchy within a test class hierarchy, you
must explicitly name that level by supplying the same value to the
<varname>name</varname> attribute in
<interfacename>@ContextConfiguration</interfacename> at each
corresponding level in the class hierarchy. See <xref
linkend="testcontext-ctx-management-ctx-hierarchies"/> and the
Javadoc for <interfacename>@ContextHierarchy</interfacename> for
further examples.</para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@ActiveProfiles</interfacename> </emphasis></para>
<para>A class-level annotation that is used to declare which
<emphasis>bean definition profiles</emphasis> should be active when
loading an <interfacename>ApplicationContext</interfacename> for
test classes.</para>
<programlisting language="java">@ContextConfiguration
<emphasis role="bold">@ActiveProfiles</emphasis>("dev")
public class DeveloperTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<programlisting language="java">@ContextConfiguration
<emphasis role="bold">@ActiveProfiles</emphasis>({"dev", "integration"})
public class DeveloperIntegrationTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<note>
<para><interfacename>@ActiveProfiles</interfacename> provides
support for <emphasis>inheriting</emphasis> active bean definition
profiles declared by superclasses by default.</para>
</note>
<para>See <xref linkend="testcontext-ctx-management-env-profiles"/>
and the Javadoc for <interfacename>@ActiveProfiles</interfacename>
for examples and further details.</para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@DirtiesContext</interfacename> </emphasis></para>
<para>Indicates that the underlying Spring
<interfacename>ApplicationContext</interfacename> has been
<emphasis>dirtied</emphasis> during the execution of a test (i.e.,
modified or corrupted in some manner — for example, by changing the
state of a singleton bean) and should be closed, regardless of
whether the test passed. When an application context is marked
<emphasis>dirty</emphasis>, it is removed from the testing
framework's cache and closed. As a consequence, the underlying
Spring container will be rebuilt for any subsequent test that
requires a context with the same configuration metadata.</para>
<para><interfacename>@DirtiesContext</interfacename> can be used as
both a class-level and method-level annotation within the same test
class. In such scenarios, the
<interfacename>ApplicationContext</interfacename> is marked as
<emphasis>dirty</emphasis> after any such annotated method as well
as after the entire class. If the <classname>ClassMode</classname>
is set to <literal>AFTER_EACH_TEST_METHOD</literal>, the context is
marked dirty after each test method in the class.</para>
<para>The following examples explain when the context would be
dirtied for various configuration scenarios:</para>
<itemizedlist>
<listitem>
<para>After the current test class, when declared on a class
with class mode set to <literal>AFTER_CLASS</literal> (i.e., the
default class mode).</para>
<programlisting language="java"><emphasis role="bold">@DirtiesContext</emphasis>
public class ContextDirtyingTests {
<lineannotation>// some tests that result in the Spring container being dirtied</lineannotation>
}</programlisting>
</listitem>
<listitem>
<para>After each test method in the current test class, when
declared on a class with class mode set to
<literal>AFTER_EACH_TEST_METHOD.</literal><programlisting
language="java"><emphasis role="bold">@DirtiesContext</emphasis>(<emphasis
role="bold">classMode</emphasis> = ClassMode.AFTER_EACH_TEST_METHOD)
public class ContextDirtyingTests {
<lineannotation>// some tests that result in the Spring container being dirtied</lineannotation>
}</programlisting></para>
</listitem>
<listitem>
<para>After the current test, when declared on a method.</para>
<programlisting language="java"><emphasis role="bold">@DirtiesContext</emphasis>
@Test
public void testProcessWhichDirtiesAppCtx() {
<lineannotation>// some logic that results in the Spring container being dirtied</lineannotation>
}</programlisting>
</listitem>
</itemizedlist>
<para>If <interfacename>@DirtiesContext</interfacename> is used in a
test whose context is configured as part of a context hierarchy via
<interfacename>@ContextHierarchy</interfacename>, the
<varname>hierarchyMode</varname> flag can be used to control how the
context cache is cleared. By default an
<emphasis>exhaustive</emphasis> algorithm will be used that clears
the context cache including not only the current level but also all
other context hierarchies that share an ancestor context common to
the current test; all
<interfacename>ApplicationContext</interfacename>s that reside in a
sub-hierarchy of the common ancestor context will be removed from
the context cache and closed. If the <emphasis>exhaustive</emphasis>
algorithm is overkill for a particular use case, the simpler
<emphasis>current level</emphasis> algorithm can be specified
instead, as seen below.</para>
<programlisting language="java">@ContextHierarchy({
@ContextConfiguration("/parent-config.xml"),
@ContextConfiguration("/child-config.xml")
})
public class BaseTests {
<lineannotation>// class body...</lineannotation>
}
public class ExtendedTests extends BaseTests {
@Test
@DirtiesContext(<emphasis role="bold">hierarchyMode = HierarchyMode.CURRENT_LEVEL</emphasis>)
public void test() {
<lineannotation>// some logic that results in the child context being dirtied</lineannotation>
}
}</programlisting>
<para>For further details regarding the
<constant>EXHAUSTIVE</constant> and
<constant>CURRENT_LEVEL</constant> algorithms see the Javadoc for
<interfacename>DirtiesContext.HierarchyMode</interfacename>.</para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@TestExecutionListeners</interfacename>
</emphasis></para>
<para>Defines class-level metadata for configuring which
<interfacename>TestExecutionListener</interfacename>s should be
registered with the <classname>TestContextManager</classname>.
Typically, <interfacename>@TestExecutionListeners</interfacename> is
used in conjunction with
<interfacename>@ContextConfiguration</interfacename>.</para>
<programlisting language="java">@ContextConfiguration
<emphasis role="bold">@TestExecutionListeners</emphasis>({CustomTestExecutionListener.class, AnotherTestExecutionListener.class})
public class CustomTestExecutionListenerTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para><interfacename>@TestExecutionListeners</interfacename>
supports <emphasis>inherited</emphasis> listeners by default. See
the Javadoc for an example and further details.</para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@TransactionConfiguration</interfacename>
</emphasis></para>
<para>Defines class-level metadata for configuring transactional
tests. Specifically, the bean name of the
<interfacename>PlatformTransactionManager</interfacename> that
should be used to drive transactions can be explicitly specified if
there are multiple beans of type
<interfacename>PlatformTransactionManager</interfacename> in the
test's <interfacename>ApplicationContext</interfacename> and if the
bean name of the desired
<interfacename>PlatformTransactionManager</interfacename> is not
"transactionManager". In addition, you can change the
<literal>defaultRollback</literal> flag to <literal>false</literal>.
Typically, <interfacename>@TransactionConfiguration</interfacename>
is used in conjunction with
<interfacename>@ContextConfiguration</interfacename>.</para>
<programlisting language="java">@ContextConfiguration
<emphasis role="bold">@TransactionConfiguration</emphasis>(<emphasis role="bold">transactionManager</emphasis> = "txMgr", <emphasis
role="bold">defaultRollback</emphasis> = false)
public class CustomConfiguredTransactionalTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<note>
<para>If the default conventions are sufficient for your test
configuration, you can avoid using
<interfacename>@TransactionConfiguration</interfacename>
altogether. In other words, if you have only one transaction
manger — or if you have multiple transaction mangers but the
transaction manager for tests is named "transactionManager" or
specified via a
<interfacename>TransactionManagementConfigurer</interfacename>
and if you want transactions to roll back automatically, then
there is no need to annotate your test class with
<interfacename>@TransactionConfiguration</interfacename>.</para>
</note>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@Rollback</interfacename> </emphasis></para>
<para>Indicates whether the transaction for the annotated test
method should be <emphasis>rolled back</emphasis> after the test
method has completed. If <literal>true</literal>, the transaction is
rolled back; otherwise, the transaction is committed. Use
<interfacename>@Rollback</interfacename> to override the default
rollback flag configured at the class level.</para>
<programlisting language="java"><emphasis role="bold">@Rollback</emphasis>(false)
@Test
public void testProcessWithoutRollback() {
<lineannotation>// ...</lineannotation>
}</programlisting>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@BeforeTransaction</interfacename> </emphasis></para>
<para>Indicates that the annotated <literal>public void</literal>
method should be executed <emphasis>before</emphasis> a transaction
is started for test methods configured to run within a transaction
via the <interfacename>@Transactional</interfacename>
annotation.</para>
<programlisting language="java"><emphasis role="bold">@BeforeTransaction
</emphasis>public void beforeTransaction() {
<lineannotation>// logic to be executed before a transaction is started</lineannotation>
}</programlisting>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@AfterTransaction</interfacename> </emphasis></para>
<para>Indicates that the annotated <literal>public void</literal>
method should be executed <emphasis>after</emphasis> a transaction
has ended for test methods configured to run within a transaction
via the <interfacename>@Transactional</interfacename>
annotation.</para>
<programlisting language="java"><emphasis role="bold">@AfterTransaction
</emphasis>public void afterTransaction() {
<lineannotation>// logic to be executed after a transaction has ended</lineannotation>
}</programlisting>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@NotTransactional</interfacename> </emphasis></para>
<para>The presence of this annotation indicates that the annotated
test method must <emphasis>not</emphasis> execute in a transactional
context.</para>
<programlisting language="java"><emphasis role="bold">@NotTransactional</emphasis>
@Test
public void testProcessWithoutTransaction() {
<lineannotation>// ...</lineannotation>
}</programlisting>
<warning>
<title>@NotTransactional is deprecated</title>
<para>As of Spring 3.0,
<interfacename>@NotTransactional</interfacename> is deprecated in
favor of moving the <emphasis>non-transactional</emphasis> test
method to a separate (non-transactional) test class or to a
<interfacename>@BeforeTransaction</interfacename> or
<interfacename>@AfterTransaction</interfacename> method. As an
alternative to annotating an entire class with
<interfacename>@Transactional</interfacename>, consider annotating
individual methods with
<interfacename>@Transactional</interfacename>; doing so allows a
mix of transactional and non-transactional methods in the same
test class without the need for using
<interfacename>@NotTransactional</interfacename>.</para>
</warning>
</listitem>
</itemizedlist>
</section>
<section xml:id="integration-testing-annotations-standard">
<title>Standard Annotation Support</title>
<para>The following annotations are supported with standard semantics
for all configurations of the Spring TestContext Framework. Note that
these annotations are not specific to tests and can be used anywhere in
the Spring Framework.</para>
<itemizedlist>
<listitem>
<para><emphasis role="bold">
<interfacename>@Autowired</interfacename> </emphasis></para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@Qualifier</interfacename> </emphasis></para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@Resource</interfacename> </emphasis>
(javax.annotation) <emphasis>if JSR-250 is present</emphasis></para>
</listitem>
<listitem>
<para><emphasis role="bold"> <interfacename>@Inject</interfacename>
</emphasis> (javax.inject) <emphasis>if JSR-330 is
present</emphasis></para>
</listitem>
<listitem>
<para><emphasis role="bold"> <interfacename>@Named</interfacename>
</emphasis> (javax.inject) <emphasis>if JSR-330 is
present</emphasis></para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@PersistenceContext</interfacename> </emphasis>
(javax.persistence) <emphasis>if JPA is present</emphasis></para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@PersistenceUnit</interfacename> </emphasis>
(javax.persistence) <emphasis>if JPA is present</emphasis></para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@Required</interfacename> </emphasis></para>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@Transactional</interfacename> </emphasis></para>
</listitem>
</itemizedlist>
<note>
<title>JSR-250 Lifecycle Annotations</title>
<para>In the Spring TestContext Framework
<interfacename>@PostConstruct</interfacename> and
<interfacename>@PreDestroy</interfacename> may be used with standard
semantics on any application components configured in the
<interfacename>ApplicationContext</interfacename>; however, these
lifecycle annotations have limited usage within an actual test
class.</para>
<para>If a method within a test class is annotated with
<interfacename>@PostConstruct</interfacename>, that method will be
executed before any <emphasis>before</emphasis> methods of the
underlying test framework (e.g., methods annotated with JUnit's
<interfacename>@Before</interfacename>), and that will apply for every
test method in the test class. On the other hand, if a method within a
test class is annotated with
<interfacename>@PreDestroy</interfacename>, that method will <emphasis
role="bold">never</emphasis> be executed. Within a test class it is
therefore recommended to use test lifecycle callbacks from the
underlying test framework instead of
<interfacename>@PostConstruct</interfacename> and
<interfacename>@PreDestroy</interfacename>.</para>
</note>
</section>
<section xml:id="integration-testing-annotations-junit">
<title>Spring JUnit Testing Annotations</title>
<para>The following annotations are <emphasis>only</emphasis> supported
when used in conjunction with the <link
linkend="testcontext-junit4-runner">SpringJUnit4ClassRunner</link> or
the <link linkend="testcontext-support-classes-junit4">JUnit</link>
support classes.</para>
<itemizedlist>
<listitem>
<para><emphasis role="bold">
<interfacename>@IfProfileValue</interfacename> </emphasis></para>
<para>Indicates that the annotated test is enabled for a specific
testing environment. If the configured
<classname>ProfileValueSource</classname> returns a matching
<literal>value</literal> for the provided <literal>name</literal>,
the test is enabled. This annotation can be applied to an entire
class or to individual methods. Class-level usage overrides
method-level usage.</para>
<programlisting language="java"><emphasis role="bold">@IfProfileValue</emphasis>(<emphasis
role="bold">name</emphasis>="java.vendor", <emphasis role="bold">value</emphasis>="Sun Microsystems Inc.")
@Test
public void testProcessWhichRunsOnlyOnSunJvm() {
<lineannotation>// some logic that should run only on Java VMs from Sun Microsystems</lineannotation>
}</programlisting>
<para>Alternatively, you can configure
<interfacename>@IfProfileValue</interfacename> with a list of
<literal>values</literal> (with <emphasis>OR</emphasis> semantics)
to achieve TestNG-like support for <emphasis>test groups</emphasis>
in a JUnit environment. Consider the following example:</para>
<programlisting language="java"><emphasis role="bold">@IfProfileValue</emphasis>(<emphasis
role="bold">name</emphasis>="test-groups", <emphasis role="bold">values</emphasis>={"unit-tests", "integration-tests"})
@Test
public void testProcessWhichRunsForUnitOrIntegrationTestGroups() {
<lineannotation>// some logic that should run only for unit and integration test groups</lineannotation>
}</programlisting>
</listitem>
<listitem>
<para><emphasis role="bold">
<interfacename>@ProfileValueSourceConfiguration</interfacename>
</emphasis></para>
<para>Class-level annotation that specifies what type of
<literal>ProfileValueSource</literal> to use when retrieving
<emphasis>profile values</emphasis> configured through the
<interfacename>@IfProfileValue</interfacename> annotation. If
<interfacename>@ProfileValueSourceConfiguration</interfacename> is
not declared for a test,
<classname>SystemProfileValueSource</classname> is used by
default.</para>
<programlisting language="java"><emphasis role="bold">@ProfileValueSourceConfiguration</emphasis>(CustomProfileValueSource.class)
public class CustomProfileValueSourceTests {
<lineannotation>// class body...</lineannotation>
}</programlisting>
</listitem>
<listitem>
<para><emphasis role="bold"> <interfacename>@Timed</interfacename>
</emphasis></para>
<para>Indicates that the annotated test method must finish execution
in a specified time period (in milliseconds). If the text execution
time exceeds the specified time period, the test fails.</para>
<para>The time period includes execution of the test method itself,
any repetitions of the test (see
<interfacename>@Repeat</interfacename>), as well as any
<emphasis>set up</emphasis> or <emphasis>tear down</emphasis> of the
test fixture.</para>
<programlisting language="java"><emphasis role="bold">@Timed</emphasis>(millis=1000)
public void testProcessWithOneSecondTimeout() {
<lineannotation>// some logic that should not take longer than 1 second to execute</lineannotation>
}</programlisting>
<para>Spring's <interfacename>@Timed</interfacename> annotation has
different semantics than JUnit's
<interfacename>@Test(timeout=...)</interfacename> support.
Specifically, due to the manner in which JUnit handles test
execution timeouts (that is, by executing the test method in a
separate <classname>Thread</classname>),
<interfacename>@Test(timeout=...)</interfacename> applies to
<emphasis>each iteration</emphasis> in the case of repetitions and
preemptively fails the test if the test takes too long. Spring's
<interfacename>@Timed</interfacename>, on the other hand, times the
<emphasis>total</emphasis> test execution time (including all
repetitions) and does not preemptively fail the test but rather
waits for the test to complete before failing.</para>
</listitem>
<listitem>
<para><emphasis role="bold"> <interfacename>@Repeat</interfacename>
</emphasis></para>
<para>Indicates that the annotated test method must be executed
repeatedly. The number of times that the test method is to be
executed is specified in the annotation.</para>
<para>The scope of execution to be repeated includes execution of
the test method itself as well as any <emphasis>set up</emphasis> or
<emphasis>tear down</emphasis> of the test fixture.</para>
<programlisting language="java"><emphasis role="bold">@Repeat</emphasis>(10)
@Test
public void testProcessRepeatedly() {
<lineannotation>// ...</lineannotation>
}</programlisting>
</listitem>
</itemizedlist>
</section>
</section>
<section xml:id="testcontext-framework">
<title>Spring TestContext Framework</title>
<para>The <emphasis>Spring <classname>TestContext</classname>
Framework</emphasis> (located in the
<literal>org.springframework.test.context</literal> package) provides
generic, annotation-driven unit and integration testing support that is
agnostic of the testing framework in use. The TestContext framework also
places a great deal of importance on <emphasis>convention over
configuration</emphasis> with reasonable defaults that can be overridden
through annotation-based configuration.</para>
<para>In addition to generic testing infrastructure, the TestContext
framework provides explicit support for JUnit and TestNG in the form of
<literal>abstract</literal> support classes. For JUnit, Spring also
provides a custom JUnit <interfacename>Runner</interfacename> that allows
one to write so-called <emphasis>POJO test classes</emphasis>. POJO test
classes are not required to extend a particular class hierarchy.</para>
<para>The following section provides an overview of the internals of the
TestContext framework. If you are only interested in using the framework
and not necessarily interested in extending it with your own custom
listeners or custom loaders, feel free to go directly to the configuration
(<link linkend="testcontext-ctx-management">context management</link>,
<link linkend="testcontext-fixture-di">dependency injection</link>, <link
linkend="testcontext-tx">transaction management</link>), <link
linkend="testcontext-support-classes">support classes</link>, and <link
linkend="integration-testing-annotations">annotation support</link>
sections.</para>
<section xml:id="testcontext-key-abstractions">
<title>Key abstractions</title>
<para>The core of the framework consists of the
<classname>TestContext</classname> and
<classname>TestContextManager</classname> classes and the
<interfacename>TestExecutionListener</interfacename>,
<interfacename>ContextLoader</interfacename>, and
<interfacename>SmartContextLoader</interfacename> interfaces. A
<classname>TestContextManager</classname> is created on a per-test basis
(e.g., for the execution of a single test method in JUnit). The
<classname>TestContextManager</classname> in turn manages a
<classname>TestContext</classname> that holds the context of the current
test. The <classname>TestContextManager</classname> also updates the
state of the <classname>TestContext</classname> as the test progresses
and delegates to <interfacename>TestExecutionListener</interfacename>s,
which instrument the actual test execution by providing dependency
injection, managing transactions, and so on. A
<interfacename>ContextLoader</interfacename> (or
<interfacename>SmartContextLoader</interfacename>) is responsible for
loading an <interfacename>ApplicationContext</interfacename> for a given
test class. Consult the Javadoc and the Spring test suite for further
information and examples of various implementations.</para>
<itemizedlist>
<listitem>
<para><classname>TestContext</classname>: Encapsulates the context
in which a test is executed, agnostic of the actual testing
framework in use, and provides context management and caching
support for the test instance for which it is responsible. The
<classname>TestContext</classname> also delegates to a
<interfacename>ContextLoader</interfacename> (or
<interfacename>SmartContextLoader</interfacename>) to load an
<interfacename>ApplicationContext</interfacename> if
requested.</para>
</listitem>
<listitem>
<para><classname>TestContextManager</classname>: The main entry
point into the <emphasis>Spring TestContext Framework</emphasis>,
which manages a single <classname>TestContext</classname> and
signals events to all registered
<interfacename>TestExecutionListener</interfacename>s at
well-defined test execution points:</para>
<itemizedlist>
<listitem>
<para>prior to any <emphasis>before class methods</emphasis> of
a particular testing framework</para>
</listitem>
<listitem>
<para>test instance preparation</para>
</listitem>
<listitem>
<para>prior to any <emphasis>before methods</emphasis> of a
particular testing framework</para>
</listitem>
<listitem>
<para>after any <emphasis>after methods</emphasis> of a
particular testing framework</para>
</listitem>
<listitem>
<para>after any <emphasis>after class methods</emphasis> of a
particular testing framework</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para><interfacename>TestExecutionListener</interfacename>: Defines
a <emphasis>listener</emphasis> API for reacting to test execution
events published by the <classname>TestContextManager</classname>
with which the listener is registered.</para>
<para>Spring provides four
<interfacename>TestExecutionListener</interfacename> implementations
that are configured by default:
<classname>ServletTestExecutionListener</classname>,
<classname>DependencyInjectionTestExecutionListener</classname>,
<classname>DirtiesContextTestExecutionListener</classname>, and
<classname>TransactionalTestExecutionListener</classname>.
Respectively, they support Servlet API mocks for a
<interfacename>WebApplicationContext</interfacename>, dependency
injection of the test instance, handling of the
<interfacename>@DirtiesContext</interfacename> annotation, and
transactional test execution with default rollback semantics.</para>
</listitem>
<listitem>
<para><interfacename>ContextLoader</interfacename>: Strategy
interface introduced in Spring 2.5 for loading an
<interfacename>ApplicationContext</interfacename> for an integration
test managed by the Spring TestContext Framework.</para>
<para>As of Spring 3.1, implement
<interfacename>SmartContextLoader</interfacename> instead of this
interface in order to provide support for annotated classes and
active bean definition profiles.</para>
</listitem>
<listitem>
<para><interfacename>SmartContextLoader</interfacename>: Extension
of the <interfacename>ContextLoader</interfacename> interface
introduced in Spring 3.1.</para>
<para>The <interfacename>SmartContextLoader</interfacename> SPI
supersedes the <interfacename>ContextLoader</interfacename> SPI that
was introduced in Spring 2.5. Specifically, a
<interfacename>SmartContextLoader</interfacename> can choose to
process resource <varname>locations</varname>, annotated
<varname>classes</varname>, or context
<varname>initializers</varname>. Furthermore, a
<interfacename>SmartContextLoader</interfacename> can set active
bean definition profiles in the context that it loads.</para>
<para>Spring provides the following implementations:</para>
<itemizedlist>
<listitem>
<para><classname>DelegatingSmartContextLoader</classname>: one
of two default loaders which delegates internally to an
<classname>AnnotationConfigContextLoader</classname> or a
<classname>GenericXmlContextLoader</classname> depending either
on the configuration declared for the test class or on the
presence of default locations or default configuration
classes.</para>
</listitem>
<listitem>
<para><classname>WebDelegatingSmartContextLoader</classname>:
one of two default loaders which delegates internally to an
<classname>AnnotationConfigWebContextLoader</classname> or a
<classname>GenericXmlWebContextLoader</classname> depending
either on the configuration declared for the test class or on
the presence of default locations or default configuration
classes. A web <interfacename>ContextLoader</interfacename> will
only be used if
<interfacename>@WebAppConfiguration</interfacename> is present
on the test class.</para>
</listitem>
<listitem>
<para><classname>AnnotationConfigContextLoader</classname>:
loads a standard
<interfacename>ApplicationContext</interfacename> from
<emphasis>annotated classes</emphasis>.</para>
</listitem>
<listitem>
<para><classname>AnnotationConfigWebContextLoader</classname>:
loads a <interfacename>WebApplicationContext</interfacename>
from <emphasis>annotated classes</emphasis>.</para>
</listitem>
<listitem>
<para><classname>GenericXmlContextLoader</classname>: loads a
standard <interfacename>ApplicationContext</interfacename> from
XML <emphasis>resource locations</emphasis>.</para>
</listitem>
<listitem>
<para><classname>GenericXmlWebContextLoader</classname>: loads a
<interfacename>WebApplicationContext</interfacename> from XML
<emphasis>resource locations</emphasis>.</para>
</listitem>
<listitem>
<para><classname>GenericPropertiesContextLoader</classname>:
loads a standard
<interfacename>ApplicationContext</interfacename> from Java
Properties files.</para>
</listitem>
</itemizedlist>
</listitem>
</itemizedlist>
<para>The following sections explain how to configure the
<classname>TestContext</classname> framework through annotations and
provide working examples of how to write unit and integration tests with
the framework.</para>
</section>
<section xml:id="testcontext-ctx-management">
<title>Context management</title>
<para>Each <classname>TestContext</classname> provides context
management and caching support for the test instance it is responsible
for. Test instances do not automatically receive access to the
configured <interfacename>ApplicationContext</interfacename>. However,
if a test class implements the
<interfacename>ApplicationContextAware</interfacename> interface, a
reference to the <classname>ApplicationContext</classname> is supplied
to the test instance. Note that
<classname>AbstractJUnit4SpringContextTests</classname> and
<classname>AbstractTestNGSpringContextTests</classname> implement
<interfacename>ApplicationContextAware</interfacename> and therefore
provide access to the <classname>ApplicationContext</classname>
automatically.</para>
<tip>
<title>@Autowired ApplicationContext</title>
<para>As an alternative to implementing the
<interfacename>ApplicationContextAware</interfacename> interface, you
can inject the application context for your test class through the
<interfacename>@Autowired</interfacename> annotation on either a field
or setter method. For example:</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class MyTest {
<emphasis role="bold">@Autowired</emphasis>
private ApplicationContext applicationContext;
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>Similarly, if your test is configured to load a
<interfacename>WebApplicationContext</interfacename>, you can inject
the web application context into your test as follows:</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<emphasis role="bold">@WebAppConfiguration</emphasis>
@ContextConfiguration
public class MyWebAppTest {
<emphasis role="bold">@Autowired</emphasis>
private WebApplicationContext wac;
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>Dependency injection via
<interfacename>@Autowired</interfacename> is provided by the
<classname>DependencyInjectionTestExecutionListener</classname> which
is configured by default (see <xref
linkend="testcontext-fixture-di"/>).</para>
</tip>
<para>Test classes that use the TestContext framework do not need to
extend any particular class or implement a specific interface to
configure their application context. Instead, configuration is achieved
simply by declaring the
<interfacename>@ContextConfiguration</interfacename> annotation at the
class level. If your test class does not explicitly declare application
context resource <literal>locations</literal> or annotated
<varname>classes</varname>, the configured
<interfacename>ContextLoader</interfacename> determines how to load a
context from a default location or default configuration classes. In
addition to context resource <varname>locations</varname> and annotated
<varname>classes</varname>, an application context can also be
configured via application context
<varname>initializers</varname>.</para>
<para>The following sections explain how to configure an
<interfacename>ApplicationContext</interfacename> via XML configuration
files, annotated classes (typically
<interfacename>@Configuration</interfacename> classes), or context
initializers using Spring's
<interfacename>@ContextConfiguration</interfacename> annotation.
Alternatively, you can implement and configure your own custom
<interfacename>SmartContextLoader</interfacename> for advanced use
cases.</para>
<section xml:id="testcontext-ctx-management-xml">
<title>Context configuration with XML resources</title>
<para>To load an <interfacename>ApplicationContext</interfacename> for
your tests using XML configuration files, annotate your test class
with <interfacename>@ContextConfiguration</interfacename> and
configure the <literal>locations</literal> attribute with an array
that contains the resource locations of XML configuration metadata. A
plain or relative path — for example <literal>"context.xml"</literal>
— will be treated as a classpath resource that is relative to the
package in which the test class is defined. A path starting with a
slash is treated as an absolute classpath location, for example
<literal>"/org/example/config.xml"</literal>. A path which represents
a resource URL (i.e., a path prefixed with
<literal>classpath:</literal>, <literal>file:</literal>,
<literal>http:</literal>, etc.) will be used <emphasis>as
is</emphasis>.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// ApplicationContext will be loaded from "/app-config.xml" and
// "/test-config.xml" in the root of the classpath</lineannotation>
<emphasis role="bold">@ContextConfiguration(locations={"/app-config.xml", "/test-config.xml"})</emphasis>
public class MyTest {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para><interfacename>@ContextConfiguration</interfacename> supports an
alias for the <literal>locations</literal> attribute through the
standard Java <literal>value</literal> attribute. Thus, if you do not
need to declare additional attributes in
<interfacename>@ContextConfiguration</interfacename>, you can omit the
declaration of the <literal>locations</literal> attribute name and
declare the resource locations by using the shorthand format
demonstrated in the following example.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<emphasis role="bold">@ContextConfiguration({"/app-config.xml", "/test-config.xml"})</emphasis>
public class MyTest {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>If you omit both the <varname>locations</varname> and
<varname>value</varname> attributes from the
<interfacename>@ContextConfiguration</interfacename> annotation, the
TestContext framework will attempt to detect a default XML resource
location. Specifically, <classname>GenericXmlContextLoader</classname>
detects a default location based on the name of the test class. If
your class is named <literal>com.example.MyTest</literal>,
<classname>GenericXmlContextLoader</classname> loads your application
context from
<literal>"classpath:/com/example/MyTest-context.xml"</literal>.</para>
<programlisting language="java">package com.example;
@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// ApplicationContext will be loaded from
// "classpath:/com/example/MyTest-context.xml"</lineannotation>
<emphasis role="bold">@ContextConfiguration</emphasis>
public class MyTest {
<lineannotation>// class body...</lineannotation>
}</programlisting>
</section>
<section xml:id="testcontext-ctx-management-javaconfig">
<title>Context configuration with annotated classes</title>
<para>To load an <interfacename>ApplicationContext</interfacename> for
your tests using <emphasis>annotated classes</emphasis> (see <xref
linkend="beans-java"/>), annotate your test class with
<interfacename>@ContextConfiguration</interfacename> and configure the
<literal>classes</literal> attribute with an array that contains
references to annotated classes.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// ApplicationContext will be loaded from AppConfig and TestConfig</lineannotation>
<emphasis role="bold">@ContextConfiguration(classes = {AppConfig.class, TestConfig.class})</emphasis>
public class MyTest {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>If you omit the <varname>classes</varname> attribute from the
<interfacename>@ContextConfiguration</interfacename> annotation, the
TestContext framework will attempt to detect the presence of default
configuration classes. Specifically,
<classname>AnnotationConfigContextLoader</classname> will detect all
static inner classes of the test class that meet the requirements for
configuration class implementations as specified in the Javadoc for
<interfacename>@Configuration</interfacename>. In the following
example, the <classname>OrderServiceTest</classname> class declares a
static inner configuration class named <classname>Config</classname>
that will be automatically used to load the
<interfacename>ApplicationContext</interfacename> for the test class.
Note that the name of the configuration class is arbitrary. In
addition, a test class can contain more than one static inner
configuration class if desired.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// ApplicationContext will be loaded from the
// static inner Config class</lineannotation>
<emphasis role="bold">@ContextConfiguration</emphasis>
public class OrderServiceTest {
@Configuration
static class Config {
<lineannotation>// this bean will be injected into the OrderServiceTest class</lineannotation>
@Bean
public OrderService orderService() {
OrderService orderService = new OrderServiceImpl();
<lineannotation>// set properties, etc.</lineannotation>
return orderService;
}
}
@Autowired
private OrderService orderService;
@Test
public void testOrderService() {
<lineannotation>// test the orderService</lineannotation>
}
}</programlisting>
</section>
<section xml:id="testcontext-ctx-management-mixed-config">
<title>Mixing XML resources and annotated classes</title>
<para>It may sometimes be desirable to mix XML resources and annotated
classes (i.e., typically <interfacename>@Configuration</interfacename>
classes) to configure an
<interfacename>ApplicationContext</interfacename> for your tests. For
example, if you use XML configuration in production, you may decide
that you want to use <interfacename>@Configuration</interfacename>
classes to configure specific Spring-managed components for your
tests, or vice versa. As mentioned in <xref
linkend="integration-testing-annotations-spring"/> the TestContext
framework does not allow you to declare <emphasis>both</emphasis> via
<interfacename>@ContextConfiguration</interfacename>, but this does
not mean that you cannot use both.</para>
<para>If you want to use XML <emphasis role="bold">and</emphasis>
<interfacename>@Configuration</interfacename> classes to configure
your tests, you will have to pick one as the <emphasis>entry
point</emphasis>, and that one will have to include or import the
other. For example, in XML you can include
<interfacename>@Configuration</interfacename> classes via component
scanning or define them as normal Spring beans in XML; whereas, in a
<interfacename>@Configuration</interfacename> class you can use
<interfacename>@ImportResource</interfacename> to import XML
configuration files. Note that this behavior is semantically
equivalent to how you configure your application in production: in
production configuration you will define either a set of XML resource
locations or a set of <interfacename>@Configuration</interfacename>
classes that your production
<interfacename>ApplicationContext</interfacename> will be loaded from,
but you still have the freedom to include or import the other type of
configuration.</para>
</section>
<section xml:id="testcontext-ctx-management-initializers">
<title>Context configuration with context initializers</title>
<para>To configure an
<interfacename>ApplicationContext</interfacename> for your tests using
context initializers, annotate your test class with
<interfacename>@ContextConfiguration</interfacename> and configure the
<literal>initializers</literal> attribute with an array that contains
references to classes that implement
<interfacename>ApplicationContextInitializer</interfacename>. The
declared context initializers will then be used to initialize the
<interfacename>ConfigurableApplicationContext</interfacename> that is
loaded for your tests. Note that the concrete
<interfacename>ConfigurableApplicationContext</interfacename> type
supported by each declared initializer must be compatible with the
type of <interfacename>ApplicationContext</interfacename> created by
the <interfacename>SmartContextLoader</interfacename> in use (i.e.,
typically a <classname>GenericApplicationContext</classname>).
Furthermore, the order in which the initializers are invoked depends
on whether they implement Spring's
<interfacename>Ordered</interfacename> interface or are annotated with
Spring's <interfacename>@Order</interfacename> annotation.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// ApplicationContext will be loaded from TestConfig
</lineannotation><lineannotation>// and initialized by TestAppCtxInitializer</lineannotation>
<emphasis role="bold">@ContextConfiguration(
classes = TestConfig.class,
initializers = TestAppCtxInitializer.class)</emphasis>
public class MyTest {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>It is also possible to omit the declaration of XML configuration
files or annotated classes in
<interfacename>@ContextConfiguration</interfacename> entirely and
instead declare only
<interfacename>ApplicationContextInitializer</interfacename> classes
which are then responsible for registering beans in the context — for
example, by programmatically loading bean definitions from XML files
or configuration classes.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// ApplicationContext will be initialized by EntireAppInitializer
</lineannotation><lineannotation>// which presumably registers beans in the context</lineannotation>
<emphasis role="bold">@ContextConfiguration(initializers = EntireAppInitializer.class)</emphasis>
public class MyTest {
<lineannotation>// class body...</lineannotation>
}</programlisting>
</section>
<section xml:id="testcontext-ctx-management-inheritance">
<title>Context configuration inheritance</title>
<para><interfacename>@ContextConfiguration</interfacename> supports
boolean <varname>inheritLocations</varname> and
<varname>inheritInitializers</varname> attributes that denote whether
resource locations or annotated classes and context initializers
declared by superclasses should be <emphasis>inherited</emphasis>. The
default value for both flags is <literal>true</literal>. This means
that a test class inherits the resource locations or annotated classes
as well as the context initializers declared by any superclasses.
Specifically, the resource locations or annotated classes for a test
class are appended to the list of resource locations or annotated
classes declared by superclasses. Similarly, the initializers for a
given test class will be added to the set of initializers defined by
test superclasses. Thus, subclasses have the option of
<emphasis>extending</emphasis> the resource locations, annotated
classes, or context initializers.</para>
<para>If <interfacename>@ContextConfiguration</interfacename>'s
<literal>inheritLocations</literal> or
<varname>inheritInitializers</varname> attribute is set to
<literal>false</literal>, the resource locations or annotated classes
and the context initializers, respectively, for the test class
<emphasis>shadow</emphasis> and effectively replace the configuration
defined by superclasses.</para>
<para>In the following example that uses XML resource locations, the
<interfacename>ApplicationContext</interfacename> for
<classname>ExtendedTest</classname> will be loaded from
<emphasis>"base-config.xml"</emphasis> <emphasis
role="bold">and</emphasis> <emphasis>"extended-config.xml"</emphasis>,
in that order. Beans defined in
<emphasis>"extended-config.xml"</emphasis> may therefore
<emphasis>override</emphasis> (i.e., replace) those defined in
<emphasis>"base-config.xml"</emphasis>.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// ApplicationContext will be loaded from "/base-config.xml"
// in the root of the classpath</lineannotation>
<emphasis role="bold">@ContextConfiguration("/base-config.xml")</emphasis>
public class BaseTest {
<lineannotation>// class body...</lineannotation>
}
<lineannotation>// ApplicationContext will be loaded from "/base-config.xml" and
// "/extended-config.xml" </lineannotation><lineannotation>in the root of the classpath</lineannotation>
<emphasis role="bold">@ContextConfiguration("/extended-config.xml")</emphasis>
public class ExtendedTest extends BaseTest {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>Similarly, in the following example that uses annotated classes,
the <interfacename>ApplicationContext</interfacename> for
<classname>ExtendedTest</classname> will be loaded from the
<classname>BaseConfig</classname> <emphasis role="bold">and</emphasis>
<classname>ExtendedConfig</classname> classes, in that order. Beans
defined in <classname>ExtendedConfig</classname> may therefore
override (i.e., replace) those defined in
<classname>BaseConfig</classname>.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// ApplicationContext will be loaded from BaseConfig</lineannotation>
<emphasis role="bold">@ContextConfiguration(classes = BaseConfig.class)</emphasis>
public class BaseTest {
<lineannotation>// class body...</lineannotation>
}
<lineannotation>// ApplicationContext will be loaded from BaseConfig and ExtendedConfig</lineannotation>
<emphasis role="bold">@ContextConfiguration(classes = ExtendedConfig.class)</emphasis>
public class ExtendedTest extends BaseTest {
<lineannotation>// class body...</lineannotation>
}</programlisting>
<para>In the following example that uses context initializers, the
<interfacename>ApplicationContext</interfacename> for
<classname>ExtendedTest</classname> will be initialized using
<classname>BaseInitializer</classname> <emphasis
role="bold">and</emphasis> <classname>ExtendedInitializer</classname>.
Note, however, that the order in which the initializers are invoked
depends on whether they implement Spring's
<interfacename>Ordered</interfacename> interface or are annotated with
Spring's <interfacename>@Order</interfacename> annotation.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// ApplicationContext will be initialized by BaseInitializer</lineannotation>
<emphasis role="bold">@ContextConfiguration(initializers=BaseInitializer.class)</emphasis>
public class BaseTest {
<lineannotation>// class body...</lineannotation>
}
<lineannotation>// ApplicationContext will be initialized by BaseInitializer
// and ExtendedInitializer</lineannotation>
<emphasis role="bold">@ContextConfiguration(initializers=ExtendedInitializer.class)</emphasis>
public class ExtendedTest extends BaseTest {
<lineannotation>// class body...</lineannotation>
}</programlisting>
</section>
<section xml:id="testcontext-ctx-management-env-profiles">
<title>Context configuration with environment profiles</title>
<para>Spring 3.1 introduced first-class support in the framework for
the notion of environments and profiles (a.k.a., <emphasis>bean
definition profiles</emphasis>), and integration tests can be
configured to activate particular bean definition profiles for various
testing scenarios. This is achieved by annotating a test class with
the <interfacename>@ActiveProfiles</interfacename> annotation and
supplying a list of profiles that should be activated when loading the
<interfacename>ApplicationContext</interfacename> for the test.</para>
<note>
<para><interfacename>@ActiveProfiles</interfacename> may be used
with any implementation of the new
<interfacename>SmartContextLoader</interfacename> SPI, but
<interfacename>@ActiveProfiles</interfacename> is not supported with
implementations of the older
<interfacename>ContextLoader</interfacename> SPI.</para>
</note>
<para>Let's take a look at some examples with XML configuration and
<interfacename>@Configuration</interfacename> classes.</para>
<programlisting language="xml">&lt;!-- app-config.xml --&gt;
&lt;beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemaLocation="..."&gt;
&lt;bean id="transferService"
class="com.bank.service.internal.DefaultTransferService"&gt;
&lt;constructor-arg ref="accountRepository"/&gt;
&lt;constructor-arg ref="feePolicy"/&gt;
&lt;/bean&gt;
&lt;bean id="accountRepository"
class="com.bank.repository.internal.JdbcAccountRepository"&gt;
&lt;constructor-arg ref="dataSource"/&gt;
&lt;/bean&gt;
&lt;bean id="feePolicy"
class="com.bank.service.internal.ZeroFeePolicy"/&gt;
&lt;beans profile="dev"&gt;
&lt;jdbc:embedded-database id="dataSource"&gt;
&lt;jdbc:script
location="classpath:com/bank/config/sql/schema.sql"/&gt;
&lt;jdbc:script
location="classpath:com/bank/config/sql/test-data.sql"/&gt;
&lt;/jdbc:embedded-database&gt;
&lt;/beans&gt;
&lt;beans profile="production"&gt;
&lt;jee:jndi-lookup id="dataSource"
jndi-name="java:comp/env/jdbc/datasource"/&gt;
&lt;/beans&gt;
&lt;/beans&gt;</programlisting>
<programlisting language="java">package com.bank.service;
@RunWith(SpringJUnit4ClassRunner.class)
// ApplicationContext will be loaded from "classpath:/app-config.xml"
@ContextConfiguration("/app-config.xml")
@ActiveProfiles("dev")
public class TransferServiceTest {
@Autowired
private TransferService transferService;
@Test
public void testTransferService() {
// test the transferService
}
}</programlisting>
<para>When <classname>TransferServiceTest</classname> is run, its
<interfacename>ApplicationContext</interfacename> will be loaded from
the <filename>app-config.xml</filename> configuration file in the root
of the classpath. If you inspect <filename>app-config.xml</filename>
you'll notice that the <varname>accountRepository</varname> bean has a
dependency on a <varname>dataSource</varname> bean; however,
<varname>dataSource</varname> is not defined as a top-level bean.
Instead, <varname>dataSource</varname> is defined twice: once in the
<emphasis>production</emphasis> profile and once in the
<emphasis>dev</emphasis> profile.</para>
<para>By annotating <classname>TransferServiceTest</classname> with
<interfacename>@ActiveProfiles("dev")</interfacename> we instruct the
Spring TestContext Framework to load the
<interfacename>ApplicationContext</interfacename> with the active
profiles set to <literal>{"dev"}</literal>. As a result, an embedded
database will be created, and the <varname>accountRepository</varname>
bean will be wired with a reference to the development
<interfacename>DataSource</interfacename>. And that's likely what we
want in an integration test.</para>
<para>The following code listings demonstrate how to implement the
same configuration and integration test but using
<interfacename>@Configuration</interfacename> classes instead of
XML.</para>
<programlisting language="java">@Configuration
@Profile("dev")
public class StandaloneDataConfig {
@Bean
public DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.addScript("classpath:com/bank/config/sql/test-data.sql")
.build();
}
}</programlisting>
<programlisting language="java">@Configuration
@Profile("production")
public class JndiDataConfig {
@Bean
public DataSource dataSource() throws Exception {
Context ctx = new InitialContext();
return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");
}
}</programlisting>
<programlisting language="java">@Configuration
public class TransferServiceConfig {
@Autowired DataSource dataSource;
@Bean
public TransferService transferService() {
return new DefaultTransferService(accountRepository(),
feePolicy());
}
@Bean
public AccountRepository accountRepository() {
return new JdbcAccountRepository(dataSource);
}
@Bean
public FeePolicy feePolicy() {
return new ZeroFeePolicy();
}
}</programlisting>
<programlisting language="java">package com.bank.service;
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(
classes = {
TransferServiceConfig.class,
StandaloneDataConfig.class,
JndiDataConfig.class})
@ActiveProfiles("dev")
public class TransferServiceTest {
@Autowired
private TransferService transferService;
@Test
public void testTransferService() {
// test the transferService
}
}</programlisting>
<para>In this variation, we have split the XML configuration into
three independent <interfacename>@Configuration</interfacename>
classes:</para>
<itemizedlist>
<listitem>
<para><classname>TransferServiceConfig</classname>: acquires a
<varname>dataSource</varname> via dependency injection using
<interfacename>@Autowired</interfacename></para>
</listitem>
<listitem>
<para><classname>StandaloneDataConfig</classname>: defines a
<varname>dataSource</varname> for an embedded database suitable
for developer tests</para>
</listitem>
<listitem>
<para><classname>JndiDataConfig</classname>: defines a
<varname>dataSource</varname> that is retrieved from JNDI in a
production environment</para>
</listitem>
</itemizedlist>
<para>As with the XML-based configuration example, we still annotate
<classname>TransferServiceTest</classname> with
<interfacename>@ActiveProfiles("dev")</interfacename>, but this time
we specify all three configuration classes via the
<interfacename>@ContextConfiguration </interfacename>annotation. The
body of the test class itself remains completely unchanged.</para>
<!-- TODO Consider documenting inheritance for active profiles. -->
</section>
<section xml:id="testcontext-ctx-management-web">
<title>Loading a WebApplicationContext</title>
<para>Spring 3.2 introduces support for loading a
<interfacename>WebApplicationContext</interfacename> in integration
tests. To instruct the TestContext framework to load a
<interfacename>WebApplicationContext</interfacename> instead of a
standard <interfacename>ApplicationContext</interfacename>, simply
annotate the respective test class with
<interfacename>@WebAppConfiguration</interfacename>.</para>
<para>The presence of
<interfacename>@WebAppConfiguration</interfacename> on your test class
instructs the TestContext framework (TCF) that a
<interfacename>WebApplicationContext</interfacename> (WAC) should be
loaded for your integration tests. In the background the TCF makes
sure that a <interfacename>MockServletContext</interfacename> is
created and supplied to your test's WAC. By default the base resource
path for your <interfacename>MockServletContext</interfacename> will
be set to <emphasis>"src/main/webapp"</emphasis>. This is interpreted
as a path relative to the root of your JVM (i.e., normally the path to
your project). If you're familiar with the directory structure of a
web application in a Maven project, you'll know that
<emphasis>"src/main/webapp"</emphasis> is the default location for the
root of your WAR. If you need to override this default, simply provide
an alternate path to the
<interfacename>@WebAppConfiguration</interfacename> annotation (e.g.,
<interfacename>@WebAppConfiguration("src/test/webapp")</interfacename>).
If you wish to reference a base resource path from the classpath
instead of the file system, just use Spring's
<emphasis>classpath:</emphasis> prefix.</para>
<para>Please note that Spring's testing support for
<interfacename>WebApplicationContexts</interfacename> is on par with
its support for standard
<interfacename>ApplicationContexts</interfacename>. When testing with
a <interfacename>WebApplicationContext</interfacename> you are free to
declare either XML configuration files or
<interfacename>@Configuration</interfacename> classes via
<interfacename>@ContextConfiguration</interfacename>. You are of
course also free to use any other test annotations such as
<interfacename>@TestExecutionListeners</interfacename>,
<interfacename>@TransactionConfiguration</interfacename>,
<interfacename>@ActiveProfiles</interfacename>, etc.</para>
<para>The following examples demonstrate some of the various
configuration options for loading a
<interfacename>WebApplicationContext</interfacename>.</para>
<example>
<title>Conventions</title>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
// defaults to "file:src/main/webapp"
@WebAppConfiguration
// detects "WacTests-context.xml" in same package
// or static nested @Configuration class
@ContextConfiguration
public class WacTests {
//...
}</programlisting>
</example>
<para>The above example demonstrates the TestContext framework's
support for <emphasis>convention over configuration</emphasis>. If you
annotate a test class with
<interfacename>@WebAppConfiguration</interfacename> without specifying
a resource base path, the resource path will effectively default to
<emphasis>"file:src/main/webapp"</emphasis>. Similarly, if you declare
<interfacename>@ContextConfiguration</interfacename> without
specifying resource <interfacename>locations</interfacename>,
annotated <interfacename>classes</interfacename>, or context
<interfacename>initializers</interfacename>, Spring will attempt to
detect the presence of your configuration using conventions (i.e.,
<emphasis>"WacTests-context.xml"</emphasis> in the same package as the
<interfacename>WacTests</interfacename> class or static nested
<interfacename>@Configuration</interfacename> classes).</para>
<example>
<title>Default resource semantics</title>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
// file system resource
@WebAppConfiguration("webapp")
// classpath resource
@ContextConfiguration("/spring/test-servlet-config.xml")
public class WacTests {
//...
}</programlisting>
</example>
<para>This example demonstrates how to explicitly declare a resource
base path with <interfacename>@WebAppConfiguration</interfacename> and
an XML resource location with
<interfacename>@ContextConfiguration</interfacename>. The important
thing to note here is the different semantics for paths with these two
annotations. By default,
<interfacename>@WebAppConfiguration</interfacename> resource paths are
file system based; whereas,
<interfacename>@ContextConfiguration</interfacename> resource
locations are classpath based.</para>
<example>
<title>Explicit resource semantics</title>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
// classpath resource
@WebAppConfiguration("classpath:test-web-resources")
// file system resource
@ContextConfiguration("file:src/main/webapp/WEB-INF/servlet-config.xml")
public class WacTests {
//...
}</programlisting>
</example>
<para>In this third example, we see that we can override the default
resource semantics for both annotations by specifying a Spring
resource prefix. Contrast the comments in this example with the
previous example.</para>
<section xml:id="testcontext-ctx-management-web-mocks">
<title>Working with Web Mocks</title>
<para>To provide comprehensive web testing support, Spring 3.2
introduces a new
<interfacename>ServletTestExecutionListener</interfacename> that is
enabled by default. When testing against a
<interfacename>WebApplicationContext</interfacename> this <link
linkend="testcontext-key-abstractions">TestExecutionListener</link>
sets up default thread-local state via Spring Web's
<interfacename>RequestContextHolder</interfacename> before each test
method and creates a
<interfacename>MockHttpServletRequest</interfacename>,
<interfacename>MockHttpServletResponse</interfacename>, and
<interfacename>ServletWebRequest</interfacename> based on the base
resource path configured via
<interfacename>@WebAppConfiguration</interfacename>.
<interfacename>ServletTestExecutionListener</interfacename> also
ensures that the
<interfacename>MockHttpServletResponse</interfacename> and
<interfacename>ServletWebRequest</interfacename> can be injected
into the test instance, and once the test is complete it cleans up
thread-local state.</para>
<para>Once you have a
<interfacename>WebApplicationContext</interfacename> loaded for your
test you might find that you need to interact with the web mocks —
for example, to set up your test fixture or to perform assertions
after invoking your web component. The following example
demonstrates which mocks can be autowired into your test instance.
Note that the <interfacename>WebApplicationContext</interfacename>
and <interfacename>MockServletContext</interfacename> are both
cached across the test suite; whereas, the other mocks are managed
per test method by the
<interfacename>ServletTestExecutionListener</interfacename>.</para>
<example>
<title>Injecting mocks</title>
<programlisting language="java">@WebAppConfiguration
@ContextConfiguration
public class WacTests {
@Autowired WebApplicationContext wac; // cached
@Autowired MockServletContext servletContext; // cached
@Autowired MockHttpSession session;
@Autowired MockHttpServletRequest request;
@Autowired MockHttpServletResponse response;
@Autowired ServletWebRequest webRequest;
//...
}</programlisting>
</example>
</section>
</section>
<section xml:id="testcontext-ctx-management-caching">
<title>Context caching</title>
<para>Once the TestContext framework loads an
<interfacename>ApplicationContext</interfacename> (or
<interfacename>WebApplicationContext</interfacename>) for a test, that
context will be cached and reused for <emphasis
role="bold">all</emphasis> subsequent tests that declare the same
unique context configuration within the same test suite. To understand
how caching works, it is important to understand what is meant by
<emphasis>unique</emphasis> and <emphasis>test
suite</emphasis>.</para>
<para>An <interfacename>ApplicationContext</interfacename> can be
<emphasis>uniquely</emphasis> identified by the combination of
configuration parameters that are used to load it. Consequently, the
unique combination of configuration parameters are used to generate a
<emphasis>key</emphasis> under which the context is cached. The
TestContext framework uses the following configuration parameters to
build the context cache key:</para>
<itemizedlist>
<listitem>
<para><varname>locations</varname> <emphasis>(from
@ContextConfiguration)</emphasis></para>
</listitem>
<listitem>
<para><varname>classes</varname> <emphasis>(from
@ContextConfiguration)</emphasis></para>
</listitem>
<listitem>
<para><varname>contextInitializerClasses</varname> <emphasis>(from
@ContextConfiguration)</emphasis></para>
</listitem>
<listitem>
<para><varname>contextLoader</varname> <emphasis>(from
@ContextConfiguration)</emphasis></para>
</listitem>
<listitem>
<para><varname>activeProfiles</varname> <emphasis>(from
@ActiveProfiles)</emphasis></para>
</listitem>
<listitem>
<para><varname>resourceBasePath</varname> <emphasis>(from
@WebAppConfiguration)</emphasis></para>
</listitem>
</itemizedlist>
<para>For example, if <classname>TestClassA</classname> specifies
<literal>{"app-config.xml", "test-config.xml"}</literal> for the
<varname>locations</varname> (or <varname>value</varname>) attribute
of <interfacename>@ContextConfiguration</interfacename>, the
TestContext framework will load the corresponding
<interfacename>ApplicationContext</interfacename> and store it in a
<varname>static</varname> context cache under a key that is based
solely on those locations. So if <classname>TestClassB</classname>
also defines <literal>{"app-config.xml", "test-config.xml"}</literal>
for its locations (either explicitly or implicitly through
inheritance) but does not define
<interfacename>@WebAppConfiguration</interfacename>, a different
<interfacename>ContextLoader</interfacename>, different active
profiles, or different context initializers, then the same
<interfacename>ApplicationContext</interfacename> will be shared by
both test classes. This means that the setup cost for loading an
application context is incurred only once (per test suite), and
subsequent test execution is much faster.</para>
<note>
<title>Test suites and forked processes</title>
<para>The Spring TestContext framework stores application contexts
in a <emphasis>static</emphasis> cache. This means that the context
is literally stored in a <varname>static</varname> variable. In
other words, if tests execute in separate processes the static cache
will be cleared between each test execution, and this will
effectively disable the caching mechanism.</para>
<para>To benefit from the caching mechanism, all tests must run
within the same process or test suite. This can be achieved by
executing all tests as a group within an IDE. Similarly, when
executing tests with a build framework such as Ant, Maven, or Gradle
it is important to make sure that the build framework does not
<emphasis>fork</emphasis> between tests. For example, if the <link
xl:href="http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html#forkMode">forkMode</link>
for the Maven Surefire plug-in is set to <literal>always</literal>
or <literal>pertest</literal>, the TestContext framework will not be
able to cache application contexts between test classes and the
build process will run significantly slower as a result.</para>
</note>
<para>In the unlikely case that a test corrupts the application
context and requires reloading — for example, by modifying a bean
definition or the state of an application object — you can annotate
your test class or test method with
<interfacename>@DirtiesContext</interfacename> (see the discussion of
<interfacename>@DirtiesContext</interfacename> in <xref
linkend="integration-testing-annotations-spring"/>). This instructs
Spring to remove the context from the cache and rebuild the
application context before executing the next test. Note that support
for the <interfacename>@DirtiesContext</interfacename> annotation is
provided by the
<classname>DirtiesContextTestExecutionListener</classname> which is
enabled by default.</para>
</section>
<section xml:id="testcontext-ctx-management-ctx-hierarchies">
<title>Context hierarchies</title>
<para>When writing integration tests that rely on a loaded Spring
<interfacename>ApplicationContext</interfacename>, it is often
sufficient to test against a single context; however, there are times
when it is beneficial or even necessary to test against a hierarchy of
<interfacename>ApplicationContext</interfacename>s. For example, if
you are developing a Spring MVC web application you will typically
have a root <interfacename>WebApplicationContext</interfacename>
loaded via Spring's <classname>ContextLoaderListener</classname> and a
child <interfacename>WebApplicationContext</interfacename> loaded via
Spring's <classname>DispatcherServlet</classname>. This results in a
parent-child context hierarchy where shared components and
infrastructure configuration are declared in the root context and
consumed in the child context by web-specific components. Another use
case can be found in Spring Batch applications where you often have a
parent context that provides configuration for shared batch
infrastructure and a child context for the configuration of a specific
batch job.</para>
<para>As of Spring Framework 3.2.2, it is possible to write
integration tests that use context hierarchies by declaring context
configuration via the <interfacename>@ContextHierarchy</interfacename>
annotation, either on an individual test class or within a test class
hierarchy. If a context hierarchy is declared on multiple classes
within a test class hierarchy it is also possible to merge or override
the context configuration for a specific, named level in the context
hierarchy. When merging configuration for a given level in the
hierarchy the configuration resource type (i.e., XML configuration
files or annotated classes) must be consistent; otherwise, it is
perfectly acceptable to have different levels in a context hierarchy
configured using different resource types.</para>
<para>The following JUnit-based examples demonstrate common
configuration scenarios for integration tests that require the use of
context hierarchies.</para>
<example>
<title>Single test class with context hierarchy</title>
<para><classname>ControllerIntegrationTests</classname> represents a
typical integration testing scenario for a Spring MVC web
application by declaring a context hierarchy consisting of two
levels, one for the <emphasis>root</emphasis> WebApplicationContext
(loaded using the <classname>TestAppConfig</classname>
<interfacename>@Configuration</interfacename> class) and one for the
<emphasis>dispatcher servlet</emphasis>
<interfacename>WebApplicationContext</interfacename> (loaded using
the <classname>WebConfig</classname>
<interfacename>@Configuration</interfacename> class). The
<interfacename>WebApplicationContext</interfacename> that is
<emphasis>autowired</emphasis> into the test instance is the one for
the child context (i.e., the lowest context in the
hierarchy).</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextHierarchy({
@ContextConfiguration(classes = TestAppConfig.class),
@ContextConfiguration(classes = WebConfig.class)
})
public class ControllerIntegrationTests {
@Autowired
private WebApplicationContext wac;
// ...
}</programlisting>
</example>
<example>
<title>Class hierarchy with implicit parent context</title>
<para>The following test classes define a context hierarchy within a
test class hierarchy. <classname>AbstractWebTests</classname>
declares the configuration for a root
<interfacename>WebApplicationContext</interfacename> in a
Spring-powered web application. Note, however, that
<classname>AbstractWebTests</classname> does not declare
<interfacename>@ContextHierarchy</interfacename>; consequently,
subclasses of <classname>AbstractWebTests</classname> can optionally
participate in a context hierarchy or simply follow the standard
semantics for <interfacename>@ContextConfiguration</interfacename>.
<classname>SoapWebServiceTests</classname> and
<classname>RestWebServiceTests</classname> both extend
<classname>AbstractWebTests</classname> and define a context
hierarchy via <interfacename>@ContextHierarchy</interfacename>. The
result is that three application contexts will be loaded (one for
each declaration of
<interfacename>@ContextConfiguration</interfacename>), and the
application context loaded based on the configuration in
<classname>AbstractWebTests</classname> will be set as the parent
context for each of the contexts loaded for the concrete
subclasses.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration("file:src/main/webapp/WEB-INF/applicationContext.xml")
public abstract class AbstractWebTests {}
@ContextHierarchy(@ContextConfiguration("/spring/soap-ws-config.xml")
public class SoapWebServiceTests extends AbstractWebTests {}
@ContextHierarchy(@ContextConfiguration("/spring/rest-ws-config.xml")
public class RestWebServiceTests extends AbstractWebTests {}</programlisting>
</example>
<example>
<title>Class hierarchy with merged context hierarchy
configuration</title>
<para>The following classes demonstrate the use of
<emphasis>named</emphasis> hierarchy levels in order to
<emphasis>merge</emphasis> the configuration for specific levels in
a context hierarchy. <classname>BaseTests</classname> defines two
levels in the hierarchy, <literal>parent</literal> and
<literal>child</literal>. <classname>ExtendedTests</classname>
extends <classname>BaseTests</classname> and instructs the Spring
TestContext Framework to merge the context configuration for the
<literal>child</literal> hierarchy level, simply by ensuring that
the names declared via
<interfacename>ContextConfiguration</interfacename>'s
<varname>name</varname> attribute are both
<literal>"child"</literal>. The result is that three application
contexts will be loaded: one for
<literal>"/app-config.xml"</literal>, one for
<literal>"/user-config.xml"</literal>, and one for
<literal>{"/user-config.xml", "/order-config.xml"}</literal>. As
with the previous example, the application context loaded from
<literal>"/app-config.xml"</literal> will be set as the parent
context for the contexts loaded from
<literal>"/user-config.xml"</literal> and
<literal>{"/user-config.xml", "/order-config.xml"}</literal>.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@ContextHierarchy({
@ContextConfiguration(name = "parent", locations = "/app-config.xml"),
@ContextConfiguration(name = "child", locations = "/user-config.xml")
})
public class BaseTests {}
@ContextHierarchy(
@ContextConfiguration(name = "child", locations = "/order-config.xml")
)
public class ExtendedTests extends BaseTests {}</programlisting>
</example>
<example>
<title>Class hierarchy with overridden context hierarchy
configuration</title>
<para>In contrast to the previous example, this example demonstrates
how to <emphasis>override</emphasis> the configuration for a given
named level in a context hierarchy by setting
<interfacename>ContextConfiguration</interfacename>'s
<varname>inheritLocations</varname> flag to
<literal>false</literal>. Consequently, the application context for
<classname>ExtendedTests</classname> will be loaded only from
<literal>"/test-user-config.xml"</literal> and will have its parent
set to the context loaded from
<literal>"/app-config.xml"</literal>.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@ContextHierarchy({
@ContextConfiguration(name = "parent", locations = "/app-config.xml"),
@ContextConfiguration(name = "child", locations = "/user-config.xml")
})
public class BaseTests {}
@ContextHierarchy(
@ContextConfiguration(
name = "child",
locations = "/test-user-config.xml",
inheritLocations = false
))
public class ExtendedTests extends BaseTests {}</programlisting>
</example>
<note>
<title>Dirtying a context within a context hierarchy</title>
<para>If <interfacename>@DirtiesContext</interfacename> is used in a
test whose context is configured as part of a context hierarchy, the
<varname>hierarchyMode</varname> flag can be used to control how the
context cache is cleared. For further details consult the discussion
of <interfacename>@DirtiesContext</interfacename> in <xref
linkend="integration-testing-annotations-spring"/> and the Javadoc
for <interfacename>@DirtiesContext</interfacename>.</para>
</note>
</section>
</section>
<section xml:id="testcontext-fixture-di">
<title>Dependency injection of test fixtures</title>
<para>When you use the
<classname>DependencyInjectionTestExecutionListener</classname> — which
is configured by default — the dependencies of your test instances are
<emphasis>injected</emphasis> from beans in the application context that
you configured with
<interfacename>@ContextConfiguration</interfacename>. You may use setter
injection, field injection, or both, depending on which annotations you
choose and whether you place them on setter methods or fields. For
consistency with the annotation support introduced in Spring 2.5 and
3.0, you can use Spring's <interfacename>@Autowired</interfacename>
annotation or the <interfacename>@Inject</interfacename> annotation from
JSR 300.</para>
<tip>
<para>The TestContext framework does not instrument the manner in
which a test instance is instantiated. Thus the use of
<interfacename>@Autowired</interfacename> or
<interfacename>@Inject</interfacename> for constructors has no effect
for test classes.</para>
</tip>
<para>Because <interfacename>@Autowired</interfacename> is used to
perform <link linkend="beans-factory-autowire"> <emphasis>autowiring by
type</emphasis> </link>, if you have multiple bean definitions of the
same type, you cannot rely on this approach for those particular beans.
In that case, you can use <interfacename>@Autowired</interfacename> in
conjunction with <interfacename>@Qualifier</interfacename>. As of Spring
3.0 you may also choose to use <interfacename>@Inject</interfacename> in
conjunction with <interfacename>@Named</interfacename>. Alternatively,
if your test class has access to its
<classname>ApplicationContext</classname>, you can perform an explicit
lookup by using (for example) a call to
<methodname>applicationContext.getBean("titleRepository")</methodname>.</para>
<para>If you do not want dependency injection applied to your test
instances, simply do not annotate fields or setter methods with
<interfacename>@Autowired</interfacename> or
<interfacename>@Inject</interfacename>. Alternatively, you can disable
dependency injection altogether by explicitly configuring your class
with <interfacename>@TestExecutionListeners</interfacename> and omitting
<literal>DependencyInjectionTestExecutionListener.class</literal> from
the list of listeners.</para>
<para>Consider the scenario of testing a
<classname>HibernateTitleRepository</classname> class, as outlined in
the <link linkend="integration-testing-goals">Goals</link> section. The
next two code listings demonstrate the use of
<interfacename>@Autowired</interfacename> on fields and setter methods.
The application context configuration is presented after all sample code
listings.</para>
<note>
<para>The dependency injection behavior in the following code listings
is not specific to JUnit. The same DI techniques can be used in
conjunction with any testing framework.</para>
<para>The following examples make calls to static assertion methods
such as <literal>assertNotNull()</literal> but without prepending the
call with <literal>Assert</literal>. In such cases, assume that the
method was properly imported through an <literal>import
static</literal> declaration that is not shown in the example.</para>
</note>
<para>The first code listing shows a JUnit-based implementation of the
test class that uses <interfacename>@Autowired</interfacename> for field
injection.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// specifies the Spring configuration to load for this test fixture</lineannotation>
<emphasis role="bold">@ContextConfiguration("repository-config.xml")</emphasis>
public class HibernateTitleRepositoryTests {
<lineannotation>// this instance will be dependency injected by type</lineannotation>
<emphasis role="bold">@Autowired</emphasis>
private HibernateTitleRepository titleRepository;
@Test
public void findById() {
Title title = titleRepository.findById(new Long(10));
assertNotNull(title);
}
}</programlisting>
<para>Alternatively, you can configure the class to use
<interfacename>@Autowired</interfacename> for setter injection as seen
below.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
<lineannotation>// specifies the Spring configuration to load for this test fixture</lineannotation>
<emphasis role="bold">@ContextConfiguration("repository-config.xml")</emphasis>
public class HibernateTitleRepositoryTests {
<lineannotation>// this instance will be dependency injected by type</lineannotation>
private HibernateTitleRepository titleRepository;
<emphasis role="bold">@Autowired</emphasis>
public void setTitleRepository(HibernateTitleRepository titleRepository) {
this.titleRepository = titleRepository;
}
@Test
public void findById() {
Title title = titleRepository.findById(new Long(10));
assertNotNull(title);
}
}</programlisting>
<para>The preceding code listings use the same XML context file
referenced by the <interfacename>@ContextConfiguration</interfacename>
annotation (that is, <literal>repository-config.xml</literal>), which
looks like this:</para>
<programlisting language="xml">&lt;?xml version="1.0" encoding="UTF-8"?&gt;
&lt;beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd"&gt;
<lineannotation>&lt;!-- this bean will be injected into the HibernateTitleRepositoryTests class --&gt;</lineannotation>
&lt;bean id="<emphasis role="bold">titleRepository</emphasis>" class="<emphasis
role="bold">com.foo.repository.hibernate.HibernateTitleRepository</emphasis>"&gt;
&lt;property name="sessionFactory" ref="sessionFactory"/&gt;
&lt;/bean&gt;
&lt;bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"&gt;
<lineannotation>&lt;!-- configuration elided for brevity --&gt;</lineannotation>
&lt;/bean&gt;
&lt;/beans&gt;</programlisting>
<note>
<para>If you are extending from a Spring-provided test base class that
happens to use <interfacename>@Autowired</interfacename> on one of its
setter methods, you might have multiple beans of the affected type
defined in your application context: for example, multiple
<interfacename>DataSource</interfacename> beans. In such a case, you
can override the setter method and use the
<interfacename>@Qualifier</interfacename> annotation to indicate a
specific target bean as follows, but make sure to delegate to the
overridden method in the superclass as well.</para>
<programlisting language="java"><lineannotation>// ...</lineannotation>
@Autowired
@Override
public void setDataSource(<emphasis role="bold">@Qualifier("myDataSource")</emphasis> DataSource dataSource) {
<emphasis role="bold">super</emphasis>.setDataSource(dataSource);
}
<lineannotation>// ...</lineannotation></programlisting>
<para>The specified qualifier value indicates the specific
<interfacename>DataSource</interfacename> bean to inject, narrowing
the set of type matches to a specific bean. Its value is matched
against <literal>&lt;qualifier&gt;</literal> declarations within the
corresponding <literal>&lt;bean&gt;</literal> definitions. The bean
name is used as a fallback qualifier value, so you may effectively
also point to a specific bean by name there (as shown above, assuming
that "myDataSource" is the bean id).</para>
</note>
</section>
<section xml:id="testcontext-web-scoped-beans">
<title>Testing request and session scoped beans</title>
<para><link linkend="beans-factory-scopes-other">Request and session
scoped beans</link> have been supported by Spring for several years now,
but it's always been a bit non-trivial to test them. As of Spring 3.2
it's now a breeze to test your request-scoped and session-scoped beans
by following these steps.</para>
<itemizedlist>
<listitem>
<para>Ensure that a
<interfacename>WebApplicationContext</interfacename> is loaded for
your test by annotating your test class with
<interfacename>@WebAppConfiguration</interfacename>.</para>
</listitem>
<listitem>
<para>Inject the mock request or session into your test instance and
prepare your test fixture as appropriate.</para>
</listitem>
<listitem>
<para>Invoke your web component that you retrieved from the
configured <interfacename>WebApplicationContext</interfacename>
(i.e., via dependency injection).</para>
</listitem>
<listitem>
<para>Perform assertions against the mocks.</para>
</listitem>
</itemizedlist>
<para>The following code snippet displays the XML configuration for a
login use case. Note that the <literal>userService</literal> bean has a
dependency on a request-scoped <literal>loginAction</literal> bean.
Also, the <classname>LoginAction</classname> is instantiated using <link
linkend="expressions">SpEL expressions</link> that retrieve the username
and password from the current HTTP request. In our test, we will want to
configure these request parameters via the mock managed by the
TestContext framework.</para>
<example>
<title>Request-scoped bean configuration</title>
<programlisting language="xml">&lt;beans&gt;
&lt;bean id="userService"
class="com.example.SimpleUserService"
c:loginAction-ref="loginAction" /&gt;
&lt;bean id="loginAction" class="com.example.LoginAction"
c:username="#{request.getParameter('user')}"
c:password="#{request.getParameter('pswd')}"
scope="request"&gt;
&lt;aop:scoped-proxy /&gt;
&lt;/bean&gt;
&lt;/beans&gt;</programlisting>
</example>
<para>In <classname>RequestScopedBeanTests</classname> we inject both
the <classname>UserService</classname> (i.e., the subject under test)
and the <classname>MockHttpServletRequest</classname> into our test
instance. Within our <function>requestScope()</function> test method we
set up our test fixture by setting request parameters in the provided
<classname>MockHttpServletRequest</classname>. When the
<function>loginUser()</function> method is invoked on our
<literal>userService</literal> we are assured that the user service has
access to the request-scoped <literal>loginAction</literal> for the
current <classname>MockHttpServletRequest</classname> (i.e., the one we
just set parameters in). We can then perform assertions against the
results based on the known inputs for the username and password.</para>
<example>
<title>Request-scoped bean test</title>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
@WebAppConfiguration
public class RequestScopedBeanTests {
@Autowired UserService userService;
@Autowired MockHttpServletRequest request;
@Test
public void requestScope() {
request.setParameter("user", "enigma");
request.setParameter("pswd", "$pr!ng");
LoginResults results = userService.loginUser();
// assert results
}
}</programlisting>
</example>
<para>The following code snippet is similar to the one we saw above for
a request-scoped bean; however, this time the
<literal>userService</literal> bean has a dependency on a session-scoped
<literal>userPreferences</literal> bean. Note that the
<classname>UserPreferences</classname> bean is instantiated using a SpEL
expression that retrieves the <emphasis>theme</emphasis> from the
current HTTP session. In our test, we will need to configure a theme in
the mock session managed by the TestContext framework.</para>
<example>
<title>Session-scoped bean configuration</title>
<programlisting language="xml">&lt;beans&gt;
&lt;bean id="userService"
class="com.example.SimpleUserService"
c:userPreferences-ref="userPreferences" /&gt;
&lt;bean id="userPreferences"
class="com.example.UserPreferences"
c:theme="#{session.getAttribute('theme')}"
scope="session"&gt;
&lt;aop:scoped-proxy /&gt;
&lt;/bean&gt;
&lt;/beans&gt;</programlisting>
</example>
<para>In <classname>SessionScopedBeanTests</classname> we inject the
<classname>UserService</classname> and the
<classname>MockHttpSession</classname> into our test instance. Within
our <function>sessionScope()</function> test method we set up our test
fixture by setting the expected "theme" attribute in the provided
<classname>MockHttpSession</classname>. When the
<function>processUserPreferences()</function> method is invoked on our
<literal>userService</literal> we are assured that the user service has
access to the session-scoped <literal>userPreferences</literal> for the
current <classname>MockHttpSession</classname>, and we can perform
assertions against the results based on the configured theme.</para>
<example>
<title>Session-scoped bean test</title>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
@WebAppConfiguration
public class SessionScopedBeanTests {
@Autowired UserService userService;
@Autowired MockHttpSession session;
@Test
public void sessionScope() throws Exception {
session.setAttribute("theme", "blue");
Results results = userService.processUserPreferences();
// assert results
}
}</programlisting>
</example>
</section>
<section xml:id="testcontext-tx">
<title>Transaction management</title>
<para>In the TestContext framework, transactions are managed by the
<classname>TransactionalTestExecutionListener</classname>. Note that
<classname>TransactionalTestExecutionListener</classname> is configured
by default, even if you do not explicitly declare
<interfacename>@TestExecutionListeners</interfacename> on your test
class. To enable support for transactions, however, you must provide a
<classname>PlatformTransactionManager</classname> bean in the
application context loaded by
<interfacename>@ContextConfiguration</interfacename> semantics. In
addition, you must declare <interfacename>@Transactional</interfacename>
either at the class or method level for your tests.</para>
<para>For class-level transaction configuration (i.e., setting an
explicit bean name for the transaction manager and the default rollback
flag), see the <interfacename>@TransactionConfiguration</interfacename>
entry in the <link linkend="integration-testing-annotations">annotation
support</link> section.</para>
<para>If transactions are not enabled for the entire test class, you can
annotate methods explicitly with
<interfacename>@Transactional</interfacename>. To control whether a
transaction should commit for a particular test method, you can use the
<interfacename>@Rollback</interfacename> annotation to override the
class-level default rollback setting.</para>
<para><emphasis><link linkend="testcontext-support-classes-junit4">
<classname>AbstractTransactionalJUnit4SpringContextTests</classname>
</link> and <link linkend="testcontext-support-classes-testng">
<classname>AbstractTransactionalTestNGSpringContextTests</classname>
</link> are preconfigured for transactional support at the class
level.</emphasis></para>
<para>Occasionally you need to execute certain code before or after a
transactional test method but outside the transactional context, for
example, to verify the initial database state prior to execution of your
test or to verify expected transactional commit behavior after test
execution (if the test was configured not to roll back the transaction).
<classname>TransactionalTestExecutionListener</classname> supports the
<interfacename>@BeforeTransaction</interfacename> and
<interfacename>@AfterTransaction</interfacename> annotations exactly for
such scenarios. Simply annotate any <literal>public void</literal>
method in your test class with one of these annotations, and the
<classname>TransactionalTestExecutionListener</classname> ensures that
your <emphasis>before transaction method</emphasis> or <emphasis>after
transaction method</emphasis> is executed at the appropriate
time.</para>
<tip>
<para>Any <emphasis>before methods</emphasis> (such as methods
annotated with JUnit's <interfacename>@Before</interfacename>) and any
<emphasis>after methods</emphasis> (such as methods annotated with
JUnit's <interfacename>@After</interfacename>) are executed <emphasis
role="bold">within</emphasis> a transaction. In addition, methods
annotated with <interfacename>@BeforeTransaction</interfacename> or
<interfacename>@AfterTransaction</interfacename> are naturally not
executed for tests annotated with
<interfacename>@NotTransactional</interfacename>. However,
<interfacename>@NotTransactional</interfacename> is deprecated as of
Spring 3.0.</para>
</tip>
<para>The following JUnit-based example displays a fictitious
integration testing scenario highlighting several transaction-related
annotations. Consult the <link
linkend="integration-testing-annotations">annotation support</link>
section for further information and configuration examples.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
<emphasis role="bold">@TransactionConfiguration(transactionManager="txMgr", defaultRollback=false)</emphasis>
<emphasis role="bold">@Transactional</emphasis>
public class FictitiousTransactionalTest {
<emphasis role="bold">@BeforeTransaction</emphasis>
public void verifyInitialDatabaseState() {
<lineannotation>// logic to verify the initial state before a transaction is started</lineannotation>
}
@Before
public void setUpTestDataWithinTransaction() {
<lineannotation>// set up test data within the transaction</lineannotation>
}
@Test
<lineannotation>// overrides the class-level defaultRollback setting</lineannotation>
<emphasis role="bold">@Rollback(true)</emphasis>
public void modifyDatabaseWithinTransaction() {
<lineannotation>// logic which uses the test data and modifies database state</lineannotation>
}
@After
public void tearDownWithinTransaction() {
<lineannotation>// execute "tear down" logic within the transaction</lineannotation>
}
<emphasis role="bold">@AfterTransaction</emphasis>
public void verifyFinalDatabaseState() {
<lineannotation>// logic to verify the final state after transaction has rolled back</lineannotation>
}
}</programlisting>
<anchor xml:id="testcontext-tx-false-positives"/>
<note>
<title>Avoid false positives when testing ORM code</title>
<para>When you test application code that manipulates the state of the
Hibernate session, make sure to <emphasis>flush</emphasis> the
underlying session within test methods that execute that code. Failing
to flush the underlying session can produce <emphasis>false
positives</emphasis>: your test may pass, but the same code throws an
exception in a live, production environment. In the following
Hibernate-based example test case, one method demonstrates a false
positive, and the other method correctly exposes the results of
flushing the session. Note that this applies to JPA and any other ORM
frameworks that maintain an in-memory <emphasis>unit of
work</emphasis>.</para>
<programlisting language="java"><lineannotation>// ...</lineannotation>
@Autowired
private SessionFactory sessionFactory;
@Test // no expected exception!
public void falsePositive() {
updateEntityInHibernateSession();
// False positive: an exception will be thrown once the session is
// finally flushed (i.e., in production code)
}
@Test(expected = GenericJDBCException.class)
public void updateWithSessionFlush() {
updateEntityInHibernateSession();
// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush();
}
<lineannotation>// ...</lineannotation></programlisting>
</note>
</section>
<section xml:id="testcontext-support-classes">
<title>TestContext Framework support classes</title>
<section xml:id="testcontext-support-classes-junit4">
<title>JUnit support classes</title>
<para>The <literal>org.springframework.test.context.junit4</literal>
package provides support classes for JUnit 4.5+ based test
cases.</para>
<itemizedlist>
<listitem>
<para><classname>AbstractJUnit4SpringContextTests</classname>:
Abstract base test class that integrates the <emphasis>Spring
TestContext Framework</emphasis> with explicit
<classname>ApplicationContext</classname> testing support in a
JUnit 4.5+ environment.</para>
<para>When you extend
<classname>AbstractJUnit4SpringContextTests</classname>, you can
access the following <literal>protected</literal> instance
variable:</para>
<itemizedlist>
<listitem>
<para><literal>applicationContext</literal>: Use this variable
to perform explicit bean lookups or to test the state of the
context as a whole.</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para><classname>AbstractTransactionalJUnit4SpringContextTests</classname>:
Abstract <emphasis>transactional</emphasis> extension of
<classname>AbstractJUnit4SpringContextTests</classname> that also
adds some convenience functionality for JDBC access. Expects a
<classname>javax.sql.DataSource</classname> bean and a
<interfacename>PlatformTransactionManager</interfacename> bean to
be defined in the <classname>ApplicationContext</classname>. When
you extend
<classname>AbstractTransactionalJUnit4SpringContextTests</classname>
you can access the following <literal>protected</literal> instance
variables:</para>
<itemizedlist>
<listitem>
<para><literal>applicationContext</literal>: Inherited from
the <classname>AbstractJUnit4SpringContextTests</classname>
superclass. Use this variable to perform explicit bean lookups
or to test the state of the context as a whole.</para>
</listitem>
<listitem>
<para><literal>jdbcTemplate</literal>: Use this variable to
execute SQL statements to query the database. Such queries can
be used to confirm database state both <emphasis>prior
to</emphasis> and <emphasis>after</emphasis> execution of
database-related application code, and Spring ensures that
such queries run in the scope of the same transaction as the
application code. When used in conjunction with an ORM tool,
be sure to avoid <link
linkend="testcontext-tx-false-positives">false
positives</link>.</para>
</listitem>
</itemizedlist>
</listitem>
</itemizedlist>
<tip>
<para>These classes are a convenience for extension. If you do not
want your test classes to be tied to a Spring-specific class
hierarchy — for example, if you want to directly extend the class
you are testing — you can configure your own custom test classes by
using
<interfacename>@RunWith(SpringJUnit4ClassRunner.class)</interfacename>,
<interfacename>@ContextConfiguration</interfacename>,
<interfacename>@TestExecutionListeners</interfacename>, and so
on.</para>
</tip>
</section>
<section xml:id="testcontext-junit4-runner">
<title>Spring JUnit Runner</title>
<para>The <emphasis>Spring TestContext Framework</emphasis> offers
full integration with JUnit 4.5+ through a custom runner (tested on
JUnit 4.5 – 4.10). By annotating test classes with
<literal>@RunWith(SpringJUnit4ClassRunner.class)</literal>, developers
can implement standard JUnit-based unit and integration tests and
simultaneously reap the benefits of the TestContext framework such as
support for loading application contexts, dependency injection of test
instances, transactional test method execution, and so on. The
following code listing displays the minimal requirements for
configuring a test class to run with the custom Spring Runner.
<interfacename>@TestExecutionListeners</interfacename> is configured
with an empty list in order to disable the default listeners, which
otherwise would require an ApplicationContext to be configured through
<interfacename>@ContextConfiguration</interfacename>.</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@TestExecutionListeners({})
public class SimpleTest {
@Test
public void testMethod() {
<lineannotation>// execute test logic...</lineannotation>
}
}</programlisting>
</section>
<section xml:id="testcontext-support-classes-testng">
<title>TestNG support classes</title>
<para>The <literal>org.springframework.test.context.testng</literal>
package provides support classes for TestNG based test cases.</para>
<itemizedlist>
<listitem>
<para><classname>AbstractTestNGSpringContextTests</classname>:
Abstract base test class that integrates the <emphasis>Spring
TestContext Framework</emphasis> with explicit
<classname>ApplicationContext</classname> testing support in a
TestNG environment.</para>
<para>When you extend
<classname>AbstractTestNGSpringContextTests</classname>, you can
access the following <literal>protected</literal> instance
variable:</para>
<itemizedlist>
<listitem>
<para><literal>applicationContext</literal>: Use this variable
to perform explicit bean lookups or to test the state of the
context as a whole.</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para><classname>AbstractTransactionalTestNGSpringContextTests</classname>:
Abstract <emphasis>transactional</emphasis> extension of
<classname>AbstractTestNGSpringContextTests</classname> that adds
some convenience functionality for JDBC access. Expects a
<classname>javax.sql.DataSource</classname> bean and a
<interfacename>PlatformTransactionManager</interfacename> bean to
be defined in the <classname>ApplicationContext</classname>. When
you extend
<classname>AbstractTransactionalTestNGSpringContextTests</classname>,
you can access the following <literal>protected</literal> instance
variables:</para>
<itemizedlist>
<listitem>
<para><literal>applicationContext</literal>: Inherited from
the <classname>AbstractTestNGSpringContextTests</classname>
superclass. Use this variable to perform explicit bean lookups
or to test the state of the context as a whole.</para>
</listitem>
<listitem>
<para><literal>jdbcTemplate</literal>: Use this variable to
execute SQL statements to query the database. Such queries can
be used to confirm database state both <emphasis>prior
to</emphasis> and <emphasis>after</emphasis> execution of
database-related application code, and Spring ensures that
such queries run in the scope of the same transaction as the
application code. When used in conjunction with an ORM tool,
be sure to avoid <link
linkend="testcontext-tx-false-positives">false
positives</link>.</para>
</listitem>
</itemizedlist>
</listitem>
</itemizedlist>
<tip>
<para>These classes are a convenience for extension. If you do not
want your test classes to be tied to a Spring-specific class
hierarchy — for example, if you want to directly extend the class
you are testing — you can configure your own custom test classes by
using <interfacename>@ContextConfiguration</interfacename>,
<interfacename>@TestExecutionListeners</interfacename>, and so on,
and by manually instrumenting your test class with a
<classname>TestContextManager</classname>. See the source code of
<classname>AbstractTestNGSpringContextTests</classname> for an
example of how to instrument your test class.</para>
</tip>
</section>
</section>
</section>
<section xml:id="spring-mvc-test-framework">
<title>Spring MVC Test Framework</title>
<sidebar xml:id="spring-mvc-test-origins">
<title>Standalone project</title>
<para>Before inclusion in Spring Framework 3.2, the Spring MVC Test
framework had already existed as a separate project on GitHub where it
grew and evolved through actual use, feedback, and the contribution of
many.</para>
<para>The standalone <link
xl:href="https://github.com/SpringSource/spring-test-mvc">spring-test-mvc
project</link> is still available on GitHub and can be used in
conjunction with Spring Framework 3.1.x. Applications upgrading to 3.2
should replace the <filename>spring-test-mvc</filename> dependency with
a dependency on <filename>spring-test</filename>.</para>
<para>The <filename>spring-test</filename> module uses a different
package <classname>org.springframework.test.web</classname> but
otherwise is nearly identical with two exceptions. One is support for
features new in 3.2 (e.g. asynchronous web requests). The other relates
to the options for creating a <classname>MockMvc</classname> instance.
In Spring Framework 3.2, this can only be done through the TestContext
framework, which provides caching benefits for the loaded
configuration.</para>
</sidebar>
<para>The <emphasis>Spring MVC Test framework</emphasis> provides first
class JUnit support for testing client and server-side Spring MVC code
through a fluent API. Typically it loads the actual Spring configuration
through the <emphasis>TestContext framework</emphasis> and always uses the
<classname>DispatcherServlet</classname> to process requests thus
approximating full integration tests without requiring a running Servlet
container.</para>
<para>Client-side tests are <classname>RestTemplate</classname>-based and
allow tests for code that relies on the
<classname>RestTemplate</classname> without requiring a running server to
respond to the requests.</para>
<section xml:id="spring-mvc-test-server">
<title>Server-Side Tests</title>
<para>Before Spring Framework 3.2, the most likely way to test a Spring
MVC controller was to write a unit test that instantiates the
controller, injects it with mock or stub dependencies, and then calls
its methods directly, using a
<classname>MockHttpServletRequest</classname> and
<classname>MockHttpServletResponse</classname> where necessary.</para>
<para>Although this is pretty easy to do, controllers have many
annotations, and much remains untested. Request mappings, data binding,
type conversion, and validation are just a few examples of what isn't
tested. Furthermore, there are other types of annotated methods such as
<interfacename>@InitBinder</interfacename>,
<interfacename>@ModelAttribute</interfacename>, and
<interfacename>@ExceptionHandler</interfacename> that get invoked as
part of request processing.</para>
<para>The idea behind Spring MVC Test is to be able to re-write those
controller tests by performing actual requests and generating responses,
as they would be at runtime, along the way invoking controllers through
the Spring MVC <classname>DispatcherServlet</classname>. Controllers can
still be injected with mock dependencies, so tests can remain focused on
the web layer.</para>
<para>Spring MVC Test builds on the familiar "mock" implementations of
the Servlet API available in the <filename>spring-test</filename>
module. This allows performing requests and generating responses without
the need for running in a Servlet container. For the most part
everything should work as it does at runtime with the exception of JSP
rendering, which is not available outside a Servlet container.
Furthermore, if you are familiar with how the
<classname>MockHttpServletResponse</classname> works, you'll know that
forwards and redirects are not actually executed. Instead "forwarded"
and "redirected" URLs are saved and can be asserted in tests. This means
if you are using JSPs, you can verify the JSP page to which the request
was forwarded.</para>
<para>All other means of rendering including
<interfacename>@ResponseBody</interfacename> methods and
<interfacename>View</interfacename> types (besides JSPs) such as
Freemarker, Velocity, Thymeleaf, and others for rendering HTML, JSON,
XML, and so on should work as expected, and the response will contain
the generated content.</para>
<para>Below is an example of a test requesting account information in
JSON format:</para>
<programlisting language="java">import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;
@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration("test-servlet-context.xml")
public class ExampleTests {
@Autowired
private WebApplicationContext wac;
private MockMvc mockMvc;
@Before
public void setup() {
this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();
}
@Test
public void getAccount() throws Exception {
this.mockMvc.perform(get("/accounts/1").accept(MediaType.parseMediaType("application/json;charset=UTF-8")))
.andExpect(status().isOk())
.andExpect(content().contentType("application/json"))
.andExpect(jsonPath("$.name").value("Lee"));
}
}</programlisting>
<para>The test relies on the
<interfacename>WebApplicationContext</interfacename> support of the
<emphasis>TestContext framework</emphasis>. It loads Spring
configuration from an XML configuration file located in the same package
as the test class (also supports JavaConfig) and injects the created
<interfacename>WebApplicationContext</interfacename> into the test so a
<classname>MockMvc</classname> instance can be created with it.</para>
<para>The <classname>MockMvc</classname> is then used to perform a
request to <filename>"/accounts/1"</filename> and verify the resulting
response status is 200, the response content type is
<filename>"application/json"</filename>, and response content has a JSON
property called "name" with the value "Lee". JSON content is inspected
with the help of Jayway's <link
xl:href="https://github.com/jayway/JsonPath">JsonPath project</link>.
There are lots of other options for verifying the result of the
performed request and those will be discussed later.</para>
<section xml:id="spring-mvc-test-server-static-imports">
<title>Static Imports</title>
<para>The fluent API in the example above requires a few static
imports such as <classname>MockMvcRequestBuilders.*</classname>,
<classname>MockMvcResultMatchers.*</classname>, and
<classname>MockMvcBuilders.*</classname>. An easy way to find these
classes is to search for types matching
<emphasis>"MockMvc*"</emphasis>. If using Eclipse, be sure to add them
as "favorite static members" in the Eclipse preferences under
<emphasis>Java -&gt; Editor -&gt; Content Assist -&gt;
Favorites</emphasis>. That will allow use of content assist after
typing the first character of the static method name. Other IDEs (e.g.
IntelliJ) may not require any additional configuration. Just check the
support for code completion on static members.</para>
</section>
<section xml:id="spring-mvc-test-server-setup-options">
<title>Setup Options</title>
<para>The goal of server-side test setup is to create an instance of
<classname>MockMvc</classname> that can be used to perform requests.
There are two main options.</para>
<para>The first option is to point to Spring MVC configuration through
the <emphasis>TestContext framework</emphasis>, which loads the Spring
configuration and injects a
<interfacename>WebApplicationContext</interfacename> into the test to
use to create a <classname>MockMvc</classname>:</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration("my-servlet-context.xml")
public class MyWebTests {
@Autowired
private WebApplicationContext wac;
private MockMvc mockMvc;
@Before
public void setup() {
this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();
}
// ...
}</programlisting>
<para>The second option is to simply register a controller instance
without loading any Spring configuration. Instead basic Spring MVC
configuration suitable for testing annotated controllers is
automatically created. The created configuration is comparable to that
of the MVC JavaConfig (and the MVC namespace) and can be customized to
a degree through builder-style methods:</para>
<programlisting language="java">public class MyWebTests {
private MockMvc mockMvc;
@Before
public void setup() {
this.mockMvc = MockMvcBuilders.standaloneSetup(new AccountController()).build();
}
// ...
}</programlisting>
<para>Which option should you use?</para>
<para>The <emphasis>"webAppContextSetup"</emphasis> loads the actual
Spring MVC configuration resulting in a more complete integration
test. Since the <emphasis>TestContext framework</emphasis> caches the
loaded Spring configuration, it helps to keep tests running fast even
as more tests get added. Furthermore, you can inject mock services
into controllers through Spring configuration, in order to remain
focused on testing the web layer. Here is an example of declaring a
mock service with Mockito:</para>
<programlisting language="xml">&lt;bean id="accountService" class="org.mockito.Mockito" factory-method="mock"&gt;
&lt;constructor-arg value="org.example.AccountService"/&gt;
&lt;/bean&gt;
</programlisting>
<para>Then you can inject the mock service into the test in order set
up and verify expectations:</para>
<programlisting language="java">@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration("test-servlet-context.xml")
public class AccountTests {
@Autowired
private WebApplicationContext wac;
private MockMvc mockMvc;
@Autowired
private AccountService accountService;
// ...
}</programlisting>
<para>The <emphasis>"standaloneSetup"</emphasis> on the other hand is
a little closer to a unit test. It tests one controller at a time, the
controller can be injected with mock dependencies manually, and it
doesn't involve loading Spring configuration. Such tests are more
focused in style and make it easier to see which controller is being
tested, whether any specific Spring MVC configuration is required to
work, and so on. The "standaloneSetup" is also a very convenient way
to write ad-hoc tests to verify some behavior or to debug an
issue.</para>
<para>Just like with integration vs unit testing, there is no right or
wrong answer. Using the "standaloneSetup" does imply the need for some
additional "webAppContextSetup" tests to verify the Spring MVC
configuration. Alternatively, you can decide write all tests with
"webAppContextSetup" and always test against actual Spring MVC
configuration.</para>
</section>
<section xml:id="spring-mvc-test-server-performing-requests">
<title>Performing Requests</title>
<para>To perform requests, use the appropriate HTTP method and
additional builder-style methods corresponding to properties of
<classname>MockHttpServletRequest</classname>. For example:</para>
<programlisting language="java">mockMvc.perform(post("/hotels/{id}", 42).accept(MediaType.APPLICATION_JSON));
</programlisting>
<para>In addition to all the HTTP methods, you can also perform file
upload requests, which internally creates an instance of
<classname>MockMultipartHttpServletRequest</classname>:</para>
<programlisting language="java">mockMvc.perform(fileUpload("/doc").file("a1", "ABC".getBytes("UTF-8")));
</programlisting>
<para>Query string parameters can be specified in the URI
template:</para>
<programlisting language="java">mockMvc.perform(get("/hotels?foo={foo}", "bar"));
</programlisting>
<para>Or by adding Servlet request parameters:</para>
<programlisting language="java">mockMvc.perform(get("/hotels").param("foo", "bar"));
</programlisting>
<para>If application code relies on Servlet request parameters, and
doesn't check the query string, as is most often the case, then it
doesn't matter how parameters are added. Keep in mind though that
parameters provided in the URI template will be decoded while
parameters provided through the <function>param(...)</function> method
are expected to be decoded.</para>
<para>In most cases it's preferable to leave out the context path and
the Servlet path from the request URI. If you must test with the full
request URI, be sure to set the <function>contextPath</function> and
<function>servletPath</function> accordingly so that request mappings
will work:</para>
<programlisting language="java">mockMvc.perform(get("/app/main/hotels/{id}").contextPath("/app").servletPath("/main"))
</programlisting>
<para>Looking at the above example, it would be cumbersome to set the
contextPath and servletPath with every performed request. That's why
you can define default request properties when building the
<classname>MockMvc</classname>:</para>
<programlisting language="java">public class MyWebTests {
private MockMvc mockMvc;
@Before
public void setup() {
mockMvc = standaloneSetup(new AccountController())
.defaultRequest(get("/")
.contextPath("/app").servletPath("/main")
.accept(MediaType.APPLICATION_JSON).build();
}
}</programlisting>
<para>The above properties will apply to every request performed
through the <classname>MockMvc</classname>. If the same property is
also specified on a given request, it will override the default value.
That is why, the HTTP method and URI don't matter, when setting
default request properties, since they must be specified on every
request.</para>
</section>
<section xml:id="spring-mvc-test-server-defining-expectations">
<title>Defining Expectations</title>
<para>Expectations can be defined by appending one or more
<function>.andExpect(..)</function> after call to perform the
request:</para>
<programlisting language="java">mockMvc.perform(get("/accounts/1")).andExpect(status().isOk());
</programlisting>
<para><literal>MockMvcResultMatchers.*</literal> defines a number of
static members, some of which return types with additional methods,
for asserting the result of the performed request. The assertions fall
in two general categories.</para>
<para>The first category of assertions verify properties of the
response, i.e the response status, headers, and content. Those are the
most important things to test for.</para>
<para>The second category of assertions go beyond the response, and
allow inspecting Spring MVC specific constructs such as which
controller method processed the request, whether an exception was
raised and handled, what the content of the model is, what view was
selected, what flash attributes were added, and so on. It is also
possible to verify Servlet specific constructs such as request and
session attributes. The following test asserts that binding/validation
failed:</para>
<programlisting language="java">
mockMvc.perform(post("/persons"))
.andExpect(status().isOk())
.andExpect(model().attributeHasErrors("person"));
</programlisting>
<para>Many times when writing tests, it's useful to dump the result of
the performed request. This can be done as follows, where
<function>print()</function> is a static import from
<classname>MockMvcResultHandlers</classname>:</para>
<programlisting language="java">mockMvc.perform(post("/persons"))
.andDo(print())
.andExpect(status().isOk())
.andExpect(model().attributeHasErrors("person"));</programlisting>
<para>As long as request processing causes an unhandled exception, the
<function>print()</function> method will print all the available
result data to <literal>System.out</literal>.</para>
<para>In some cases, you may want to get direct access to the result
and verify something that cannot be verified otherwise. This can be
done by appending <function>.andReturn()</function> at the end after
all expectations:</para>
<programlisting language="java">MvcResult mvcResult = mockMvc.perform(post("/persons")).andExpect(status().isOk()).andReturn();
// ...</programlisting>
<para>When all tests repeat the same expectations, you can define the
common expectations once when building the
<classname>MockMvc</classname>:</para>
<programlisting language="java">standaloneSetup(new SimpleController())
.alwaysExpect(status().isOk())
.alwaysExpect(content().contentType("application/json;charset=UTF-8"))
.build()</programlisting>
<para>Note that the expectation is <emphasis>always</emphasis> applied
and cannot be overridden without creating a separate
<classname>MockMvc</classname> instance.</para>
<para>When JSON response content contains hypermedia links created
with <link
xl:href="https://github.com/SpringSource/spring-hateoas">Spring
HATEOAS</link>, the resulting links can be verified:</para>
<programlisting language="java">mockMvc.perform(get("/people").accept(MediaType.APPLICATION_JSON))
.andExpect(jsonPath("$.links[?(@.rel == 'self')].href").value("http://localhost:8080/people"));</programlisting>
<para>When XML response content contains hypermedia links created with
<link xl:href="https://github.com/SpringSource/spring-hateoas">Spring
HATEOAS</link>, the resulting links can be verified:</para>
<programlisting language="java">Map&lt;String, String&gt; ns = Collections.singletonMap("ns", "http://www.w3.org/2005/Atom");
mockMvc.perform(get("/handle").accept(MediaType.APPLICATION_XML))
.andExpect(xpath("/person/ns:link[@rel='self']/@href", ns).string("http://localhost:8080/people"));</programlisting>
</section>
<section xml:id="spring-mvc-test-server-filters">
<title>Filter Registrations</title>
<para>When setting up a <classname>MockMvc</classname>, you can
register one or more <interfacename>Filter</interfacename>
instances:</para>
<programlisting language="java">mockMvc = standaloneSetup(new PersonController()).addFilters(new CharacterEncodingFilter()).build();</programlisting>
<para>Registered filters will be invoked through
<classname>MockFilterChain</classname> from
<filename>spring-test</filename> and the last filter will delegates to
the <classname>DispatcherServlet</classname>.</para>
</section>
<section xml:id="spring-mvc-test-server-resources">
<title>Further Server-Side Test Examples</title>
<para>The framework's own tests include <link
xl:href="https://github.com/SpringSource/spring-framework/tree/master/spring-test-mvc/src/test/java/org/springframework/test/web/servlet/samples">many
sample tests</link> intended to demonstrate how to use Spring MVC
Test. Browse these examples for further ideas. Also the <link
xl:href="https://github.com/SpringSource/spring-mvc-showcase">spring-mvc-showcase</link>
has full test coverage based on Spring MVC Test.</para>
</section>
</section>
<section xml:id="spring-mvc-test-client">
<title>Client-Side REST Tests</title>
<para>Client-side tests are for code using the
<classname>RestTemplate</classname>. The goal is to define expected
requests and provide "stub" responses:</para>
<programlisting language="java">RestTemplate restTemplate = new RestTemplate();
MockRestServiceServer mockServer = MockRestServiceServer.createServer(restTemplate);
mockServer.expect(requestTo("/greeting")).andRespond(withSuccess("Hello world", "text/plain"));
// use RestTemplate ...
mockServer.verify();</programlisting>
<para>In the above example, <classname>MockRestServiceServer</classname>
-- the central class for client-side REST tests -- configures the
<classname>RestTemplate</classname> with a custom
<interfacename>ClientHttpRequestFactory</interfacename> that asserts
actual requests against expectations and returns "stub" responses. In
this case we expect a single request to "/greeting" and want to return a
200 response with "text/plain" content. We could define as many
additional requests and stub responses as necessary.</para>
<para>Once expected requests and stub responses have been defined, the
<classname>RestTemplate</classname> can be used in client-side code as
usual. At the end of the tests <literal>mockServer.verify()</literal>
can be used to verify that all expected requests were performed.</para>
<section xml:id="spring-mvc-test-client-static-imports">
<title>Static Imports</title>
<para>Just like with server-side tests, the fluent API for client-side
tests requires a few static imports. Those are easy to find by
searching <emphasis>"MockRest*"</emphasis>. Eclipse users should add
<classname>"MockRestRequestMatchers.*"</classname> and
<classname>"MockRestResponseCreators.*"</classname> as "favorite
static members" in the Eclipse preferences under <emphasis>Java -&gt;
Editor -&gt; Content Assist -&gt; Favorites</emphasis>. That allows
using content assist after typing the first character of the static
method name. Other IDEs (e.g. IntelliJ) may not require any additional
configuration. Just check the support for code completion on static
members.</para>
</section>
<section xml:id="spring-mvc-test-client-resources">
<title>Further Examples of Client-side REST Tests</title>
<para>Spring MVC Test's own tests include <link
xl:href="https://github.com/SpringSource/spring-framework/tree/master/spring-test-mvc/src/test/java/org/springframework/test/web/client/samples">example
tests</link> of client-side REST tests.</para>
</section>
</section>
</section>
<section xml:id="testing-examples-petclinic">
<title>PetClinic Example</title>
<para>The PetClinic application, available from the <link
linkend="new-in-3.0-samples">samples repository</link>, illustrates
several features of the <emphasis>Spring TestContext Framework</emphasis>
in a JUnit 4.5+ environment. Most test functionality is included in the
<classname>AbstractClinicTests</classname>, for which a partial listing is
shown below:</para>
<programlisting language="java">import static org.junit.Assert.assertEquals;
<lineannotation>// import ...</lineannotation>
<emphasis role="bold">@ContextConfiguration</emphasis>
public abstract class AbstractClinicTests <emphasis role="bold">extends AbstractTransactionalJUnit4SpringContextTests</emphasis> {
<emphasis role="bold">@Autowired</emphasis>
protected Clinic clinic;
@Test
public void getVets() {
Collection&lt;Vet&gt; vets = this.clinic.getVets();
assertEquals("JDBC query must show the same number of vets",
<emphasis role="bold">super.countRowsInTable("VETS")</emphasis>, vets.size());
Vet v1 = EntityUtils.getById(vets, Vet.class, 2);
assertEquals("Leary", v1.getLastName());
assertEquals(1, v1.getNrOfSpecialties());
assertEquals("radiology", (v1.getSpecialties().get(0)).getName());
<lineannotation>// ...</lineannotation>
}
<lineannotation>// ...</lineannotation>
}</programlisting>
<para>Notes:</para>
<itemizedlist>
<listitem>
<para>This test case extends the
<classname>AbstractTransactionalJUnit4SpringContextTests</classname>
class, from which it inherits configuration for Dependency Injection
(through the
<classname>DependencyInjectionTestExecutionListener</classname>) and
transactional behavior (through the
<classname>TransactionalTestExecutionListener</classname>).</para>
</listitem>
<listitem>
<para>The <literal>clinic</literal> instance variable — the
application object being tested — is set by Dependency Injection
through <interfacename>@Autowired</interfacename> semantics.</para>
</listitem>
<listitem>
<para>The <methodname>testGetVets()</methodname> method illustrates
how you can use the inherited
<methodname>countRowsInTable()</methodname> method to easily verify
the number of rows in a given table, thus verifying correct behavior
of the application code being tested. This allows for stronger tests
and lessens dependency on the exact test data. For example, you can
add additional rows in the database without breaking tests.</para>
</listitem>
<listitem>
<para>Like many integration tests that use a database, most of the
tests in <classname>AbstractClinicTests</classname> depend on a
minimum amount of data already in the database before the test cases
run. Alternatively, you might choose to populate the database within
the test fixture set up of your test cases — again, within the same
transaction as the tests.</para>
</listitem>
</itemizedlist>
<para>The PetClinic application supports three data access technologies:
JDBC, Hibernate, and JPA. By declaring
<interfacename>@ContextConfiguration</interfacename> without any specific
resource locations, the <classname>AbstractClinicTests</classname> class
will have its application context loaded from the default location,
<literal>AbstractClinicTests-context.xml</literal>, which declares a
common <classname>DataSource</classname>. Subclasses specify additional
context locations that must declare a
<interfacename>PlatformTransactionManager</interfacename> and a concrete
implementation of <interfacename>Clinic</interfacename>.</para>
<para>For example, the Hibernate implementation of the PetClinic tests
contains the following implementation. For this example,
<classname>HibernateClinicTests</classname> does not contain a single line
of code: we only need to declare
<interfacename>@ContextConfiguration</interfacename>, and the tests are
inherited from <classname>AbstractClinicTests</classname>. Because
<interfacename>@ContextConfiguration</interfacename> is declared without
any specific resource locations, the <emphasis>Spring TestContext
Framework</emphasis> loads an application context from all the beans
defined in <literal>AbstractClinicTests-context.xml</literal> (i.e., the
inherited locations) and
<literal>HibernateClinicTests-context.xml</literal>, with
<literal>HibernateClinicTests-context.xml</literal> possibly overriding
beans defined in
<literal>AbstractClinicTests-context.xml</literal>.</para>
<programlisting language="java"><emphasis role="bold">@ContextConfiguration</emphasis>
public class HibernateClinicTests extends AbstractClinicTests { }
</programlisting>
<para>In a large-scale application, the Spring configuration is often
split across multiple files. Consequently, configuration locations are
typically specified in a common base class for all application-specific
integration tests. Such a base class may also add useful instance
variables — populated by Dependency Injection, naturally — such as a
<classname>SessionFactory</classname> in the case of an application using
Hibernate.</para>
<para>As far as possible, you should have exactly the same Spring
configuration files in your integration tests as in the deployed
environment. One likely point of difference concerns database connection
pooling and transaction infrastructure. If you are deploying to a
full-blown application server, you will probably use its connection pool
(available through JNDI) and JTA implementation. Thus in production you
will use a <classname>JndiObjectFactoryBean</classname> or
<literal>&lt;jee:jndi-lookup&gt;</literal> for the
<classname>DataSource</classname> and
<classname>JtaTransactionManager</classname>. JNDI and JTA will not be
available in out-of-container integration tests, so you should use a
combination like the Commons DBCP <classname>BasicDataSource</classname>
and <classname>DataSourceTransactionManager</classname> or
<classname>HibernateTransactionManager</classname> for them. You can
factor out this variant behavior into a single XML file, having the choice
between application server and a 'local' configuration separated from all
other configuration, which will not vary between the test and production
environments. In addition, it is advisable to use properties files for
connection settings. See the PetClinic application for an example.</para>
</section>
</section>
<section xml:id="testing-resources">
<title>Further Resources</title>
<para>Consult the following resources for more information about
testing:</para>
<itemizedlist>
<listitem>
<para><link xl:href="http://www.junit.org/">JUnit</link>: <quote>
<emphasis>A programmer-oriented testing framework for Java</emphasis>
</quote>. Used by the Spring Framework in its test suite.</para>
</listitem>
<listitem>
<para><link xl:href="http://testng.org/">TestNG</link>: A testing
framework inspired by JUnit with added support for Java 5 annotations,
test groups, data-driven testing, distributed testing, etc.</para>
</listitem>
<listitem>
<para><link
xl:href="http://www.mockobjects.com/">MockObjects.com</link>: Web site
dedicated to mock objects, a technique for improving the design of code
within test-driven development.</para>
</listitem>
<listitem>
<para><link xl:href="http://en.wikipedia.org/wiki/Mock_Object">"Mock
Objects"</link>: Article in Wikipedia.</para>
</listitem>
<listitem>
<para><link xl:href="http://www.easymock.org/">EasyMock</link>: Java
library <quote> <emphasis>that provides Mock Objects for interfaces (and
objects through the class extension) by generating them on the fly using
Java's proxy mechanism.</emphasis> </quote> Used by the Spring Framework
in its test suite.</para>
</listitem>
<listitem>
<para><link xl:href="http://www.jmock.org/">JMock</link>: Library that
supports test-driven development of Java code with mock objects.</para>
</listitem>
<listitem>
<para><link xl:href="http://mockito.org/">Mockito</link>: Java mock
library based on the <link
xl:href="http://xunitpatterns.com/Test%20Spy.html">test spy</link>
pattern.</para>
</listitem>
<listitem>
<para><link xl:href="http://dbunit.sourceforge.net/">DbUnit</link>:
JUnit extension (also usable with Ant and Maven) targeted for
database-driven projects that, among other things, puts your database
into a known state between test runs.</para>
</listitem>
<listitem>
<para><link xl:href="http://grinder.sourceforge.net/">The
Grinder</link>: Java load testing framework.</para>
</listitem>
</itemizedlist>
</section>
</chapter>