Certain edge cases around return type covariance can trigger an
IntrospectionException when trying to create a new PropertyDescriptor;
particularly around the addition of write methods with parameter types
that do not match read method return types.
These type mismatch exceptions are raised during normal Introspector
operations as well (i.e. without ExtendedBeanInfo in the mix), but
the Introspector intentionally supresses them. In covariance cases,
there is often already a suitable write method present, e.g. discovered
in a supertype or superinterface, that, with the benefit of bridge
methods works just fine in practice at runtime. That is to say, in
these suppression cases, the rejection of the write method is 'OK' in
that there is already a write method present that can handle a call.
ExtendedBeanInfo now mirrors this suppression behavior, but does issue
a WARN-level log message to let the user know.
An important effect of this change is that ExtendedBeanInfo now modifies
the delegate BeanInfo object, whereas previously it did not. In practice
this probably matters very little, but it is a design change worth
noting. The reason for this change was to avoid the need to create new
PropertyDescriptors wherever possible. It was discovered that by updating
existing PDs, one can avoid these IntrospectionExceptions a greater
percentage of the time.
Issue: SPR-8806
Previously, #containsBean Javadoc advertised that a true return value
indicates that a call to #getBean for the same name would succeed.
This is actually not the case, and has never been. The semantics
of #containsBean have always been to indicate whether a bean definition
with the given name is definied or a singleton instance with the given
name has been registered.
The Javadoc now reflects this accurately.
Issue: SPR-8690
Prior to this change, a parsing exception would be thrown if a
<description> element was placed within a <map><entry/></map>
element. The beans XSD has always permitted this arrangement,
but BeanDefinitionParserDelegate did not respect it. The latter now
simply ignores any <description> element, rather than failing.
Issue: SPR-8563
Prior to this change, AbstractAutowireCapableBeanFactory did not support
a default ParameterNameDiscoverer. This meant that attempting to use
<constructor-arg name=".."> syntax would fail (with a fairly obscure
exception) as that feature depends on a ParameterNameDiscoverer to
introspect the constructor arguments.
This lack of a default was originally intended to avoid a dependency on
ASM, but now that (a) .asm is a built-in module and (b) .beans has a
non-optional compile-time dependency on .asm, there is no reason not to
provide this default.
The net effect is that in a number of locations throughout the
framework, namely in GenericApplicationContext and
AbstractRefreshableApplicationContext, it is no longer necessary to
explicitly call AACBF#setParameterNameDiscoverer. This also means that
using a naked BeanFactory (likely for testing scenarios) is that much
easier.
Issue: SPR-8184
Prior to this change, DirectFieldAccessor would ignore fields shadowed
in subclasses, favoring the last field processed, which happens to be
the most super declaration based on the way ReflectionUtils.doWithFields
works.
Because the locally shadowed field may be of a different type that the
superclass declaration, it is most correct to preserve and work with
the shadowed field.
Issue: SPR-8398
Attempt to access and modify the system environment works on OS X /
Linux but not under Windows. Does not represent any real failure for
production code - the need to modify the system environment is a
testing concern only, and one we can probably live without, considering
the losing battle necessary to make such a hack cross-platform.
Issue: SPR-8245
AbstractEnvironment and subclasses now register a reserved default
profile named literally 'default' such that with no action on the part
of the user, beans defined against the 'default' profile will be
registered - if no other profiles are explicitly activated.
For example, given the following three files a.xml, b.xml and c.xml:
a.xml
-----
<beans> <!-- no 'profile' attribute -->
<bean id="a" class="com.acme.A"/>
</beans>
b.xml
-----
<beans profile="default">
<bean id="b" class="com.acme.B"/>
</beans>
c.xml
-----
<beans profile="custom">
<bean id="c" class="com.acme.C"/>
</beans>
bootstrapping all of the files in a Spring ApplicationContext as
follows will result in beans 'a' and 'b', but not 'c' being registered:
ApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("a.xml");
ctx.load("b.xml");
ctx.load("c.xml");
ctx.refresh();
ctx.containsBean("a"); // true
ctx.containsBean("b"); // true
ctx.containsBean("c"); // false
whereas activating the 'custom' profile will result in beans 'a' and
'c', but not 'b' being registered:
ApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("a.xml");
ctx.load("b.xml");
ctx.load("c.xml");
ctx.getEnvironment().setActiveProfiles("custom");
ctx.refresh();
ctx.containsBean("a"); // true
ctx.containsBean("b"); // false
ctx.containsBean("c"); // true
that is, once the 'custom' profile is activated, beans defined against
the the reserved default profile are no longer registered. Beans not
defined against any profile ('a') are always registered regardless of
which profiles are active, and of course beans registered
against specific active profiles ('c') are registered.
The reserved default profile is, in practice, just another 'default
profile', as might be added through calling env.setDefaultProfiles() or
via the 'spring.profiles.default' property. The only difference is that
the reserved default is added automatically by AbstractEnvironment
implementations. As such, any call to setDefaultProfiles() or value set
for the 'spring.profiles.default' will override the reserved default
profile. If a user wishes to add their own default profile while
keeping the reserved default profile as well, it will need to be
explicitly redeclared, e.g.:
env.addDefaultProfiles("my-default-profile", "default")
The reserved default profile(s) are determined by the value returned
from AbstractEnvironment#getReservedDefaultProfiles(). This protected
method may be overridden by subclasses in order to customize the
set of reserved default profiles.
Issue: SPR-8203
Previously, ExtendedBeanInfo would attempt to process methods named
exactly 'set'. JavaBeans properties must have at least one character
following the 'set' prefix in order to qualify, and this is now
respected by EBI.
Thanks to Rob Winch for the patch fixing this problem.
Issue: SPR-8175
Decorator for instances returned from
Introspector#getBeanInfo(Class<?>) that supports detection and inclusion
of non-void returning setter methods. Fully supports indexed properties
and otherwise faithfully mimics the default
BeanInfo#getPropertyDescriptors() behavior, e.g., PropertyDescriptor
ordering, etc.
This decorator has been integrated with CachedIntrospectionResults
meaning that, in simple terms, the Spring container now supports
injection of setter methods having any return type.
Issue: SPR-8079
Previously, only commas could delimit <beans profile="p1,p2"/>. Now, as
with <bean alias="..."/>, the profile attribute allows for delimiting
by comma, space and/or semicolon.
BeanDefinitionParserDelegate.MULTI_VALUE_ATTRIBUTE_DELIMITERS has been
added as a constant to reflect the fact this set of delimiters is used
in multiple locations throughout the framework.
BDPD.BEAN_NAME_DELIMITERS now refers to the above and has been has been
preserved but deprecated for backward compat (though use outside the
framework is unlikely).
Changes originally based on user comment at
http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/comment-page-1/#comment-184455
Issue: SPR-8033
Introduce FeatureSpecification interface and implementations
FeatureSpecification objects decouple the configuration of
spring container features from the concern of parsing XML
namespaces, allowing for reuse in code-based configuration
(see @Feature* annotations below).
* ComponentScanSpec
* TxAnnotationDriven
* MvcAnnotationDriven
* MvcDefaultServletHandler
* MvcResources
* MvcViewControllers
Refactor associated BeanDefinitionParsers to delegate to new impls above
The following BeanDefinitionParser implementations now deal only
with the concern of XML parsing. Validation is handled by their
corresponding FeatureSpecification object. Bean definition creation
and registration is handled by their corresponding
FeatureSpecificationExecutor type.
* ComponentScanBeanDefinitionParser
* AnnotationDrivenBeanDefinitionParser (tx)
* AnnotationDrivenBeanDefinitionParser (mvc)
* DefaultServletHandlerBeanDefinitionParser
* ResourcesBeanDefinitionParser
* ViewControllerBeanDefinitionParser
Update AopNamespaceUtils to decouple from XML (DOM API)
Methods necessary for executing TxAnnotationDriven specification
(and eventually, the AspectJAutoProxy specification) have been
added that accept boolean arguments for whether to proxy
target classes and whether to expose the proxy via threadlocal.
Methods that accepted and introspected DOM Element objects still
exist but have been deprecated.
Introduce @FeatureConfiguration classes and @Feature methods
Allow for creation and configuration of FeatureSpecification objects
at the user level. A companion for @Configuration classes allowing
for completely code-driven configuration of the Spring container.
See changes in ConfigurationClassPostProcessor for implementation
details.
See Feature*Tests for usage examples.
FeatureTestSuite in .integration-tests is a JUnit test suite designed
to aggregate all BDP and Feature* related tests for a convenient way
to confirm that Feature-related changes don't break anything.
Uncomment this test and execute from Eclipse / IDEA. Due to classpath
issues, this cannot be compiled by Ant/Ivy at the command line.
Introduce @FeatureAnnotation meta-annotation and @ComponentScan impl
@FeatureAnnotation provides an alternate mechanism for creating
and executing FeatureSpecification objects. See @ComponentScan
and its corresponding ComponentScanAnnotationParser implementation
for details. See ComponentScanAnnotationIntegrationTests for usage
examples
Introduce Default[Formatting]ConversionService implementations
Allows for convenient instantiation of ConversionService objects
containing defaults appropriate for most environments. Replaces
similar support originally in ConversionServiceFactory (which is now
deprecated). This change was justified by the need to avoid use
of FactoryBeans in @Configuration classes (such as
FormattingConversionServiceFactoryBean). It is strongly preferred
that users simply instantiate and configure the objects that underlie
our FactoryBeans. In the case of the ConversionService types, the
easiest way to do this is to create Default* subtypes. This also
follows convention with the rest of the framework.
Minor updates to util classes
All in service of changes above. See diffs for self-explanatory
details.
* BeanUtils
* ObjectUtils
* ReflectionUtils
Decomposed Environment interface into PropertySources, PropertyResolver
objects
Environment interface and implementations are still present, but
simpler.
PropertySources container aggregates PropertySource objects;
PropertyResolver provides search, conversion, placeholder
replacement. Single implementation for now is
PropertySourcesPlaceholderResolver
Renamed EnvironmentAwarePropertyPlaceholderConfigurer to
PropertySourcesPlaceholderConfigurer
<context:property-placeholder/> now registers PSPC by default, else
PPC if systemPropertiesMode* settings are involved
Refined configuration and behavior of default profiles
See Environment interface Javadoc for details
Added Portlet implementations of relevant interfaces:
* DefaultPortletEnvironment
* PortletConfigPropertySource, PortletContextPropertySource
* Integrated each appropriately throughout Portlet app contexts
Added protected 'createEnvironment()' method to AbstractApplicationContext
Subclasses can override at will to supply a custom Environment
implementation. In practice throughout the framework, this is how
Web- and Portlet-related ApplicationContexts override use of the
DefaultEnvironment and swap in DefaultWebEnvironment or
DefaultPortletEnvironment as appropriate.
Introduced "stub-and-replace" behavior for Servlet- and Portlet-based
PropertySource implementations
Allows for early registration and ordering of the stub, then
replacement with actual backing object at refresh() time.
Added AbstractApplicationContext.initPropertySources() method to
support stub-and-replace behavior. Called from within existing
prepareRefresh() method so as to avoid impact with
ApplicationContext implementations that copy and modify AAC's
refresh() method (e.g.: Spring DM).
Added methods to WebApplicationContextUtils and
PortletApplicationContextUtils to support stub-and-replace behavior
Added comprehensive Javadoc for all new or modified types and members
Added XSD documentation for all new or modified elements and attributes
Including nested <beans>, <beans profile="..."/>, and changes for
certain attributes type from xsd:IDREF to xsd:string
Improved fix for detecting non-file based Resources in
PropertiesLoaderSupport (SPR-7547, SPR-7552)
Technically unrelated to environment work, but grouped in with
this changeset for convenience.
Deprecated (removed) context:property-placeholder
'system-properties-mode' attribute from spring-context-3.1.xsd
Functionality is preserved for those using schemas up to and including
spring-context-3.0. For 3.1, system-properties-mode is no longer
supported as it conflicts with the idea of managing a set of property
sources within the context's Environment object. See Javadoc in
PropertyPlaceholderConfigurer, AbstractPropertyPlaceholderConfigurer
and PropertySourcesPlaceholderConfigurer for details.
Introduced CollectionUtils.toArray(Enumeration<E>, A[])
Work items remaining for 3.1 M2:
Consider repackaging PropertySource* types; eliminate internal use
of SystemPropertyUtils and deprecate
Further work on composition of Environment interface; consider
repurposing existing PlaceholderResolver interface to obviate need
for resolve[Required]Placeholder() methods currently in Environment.
Ensure configurability of placeholder prefix, suffix, and value
separator when working against an AbstractPropertyResolver
Add JNDI-based Environment / PropertySource implementatinos
Consider support for @Profile at the @Bean level
Provide consistent logging for the entire property resolution
lifecycle; consider issuing all such messages against a dedicated
logger with a single category.
Add reference documentation to cover the featureset.
There is no longer a reserved default profile named 'default'. Rather,
users must explicitly specify a default profile or profiles via
ConfigurableEnvironment.setDefaultProfiles(String...)
- or -
spring.profile.default="pD1,pD2"
Per above, the setDefaultProfile(String) method now accepts a variable
number of profile names (one or more). This is symmetrical with the
existing setActiveProfiles(String...) method.
A typical scenario might involve setting both a default profile as a
servlet context property in web.xml and then setting an active profile
when deploying to production.
'default' is now a reserved profile name, indicating
that any beans defined within that profile will be registered
unless another profile or profiles have been activated.
Examples below are expressed in XML, but apply equally when
using the @Profile annotation.
EXAMPLE 1:
<beans>
<beans profile="default">
<bean id="foo" class="com.acme.EmbeddedFooImpl"/>
</beans>
<beans profile="production">
<bean id="foo" class="com.acme.ProdFooImpl"/>
</beans>
</beans>
In the case above, the EmbeddedFooImpl 'foo' bean will be
registered if:
a) no profile is active
b) the 'default' profile has explicitly been made active
The ProdFooImpl 'foo' bean will be registered if the 'production'
profile is active.
EXAMPLE 2:
<beans profile="default,xyz">
<bean id="foo" class="java.lang.String"/>
</beans>
Bean 'foo' will be registered if any of the following are true:
a) no profile is active
b) 'xyz' profile is active
c) 'default' profile has explicitly been made active
d) both (b) and (c) are true
Note that the default profile is not to be confused with specifying no
profile at all. When the default profile is specified, beans are
registered only if no other profiles are active; whereas when no profile
is specified, bean definitions are always registered regardless of which
profiles are active.
The default profile may be configured programmatically:
environmnent.setDefaultProfile("embedded");
or declaratively through any registered PropertySource, e.g. system properties:
-DdefaultSpringProfile=embedded
Assuming either of the above, example 1 could be rewritten as follows:
<beans>
<beans profile="embedded">
<bean id="foo" class="com.acme.EmbeddedFooImpl"/>
</beans>
<beans profile="production">
<bean id="foo" class="com.acme.ProdFooImpl"/>
</beans>
</beans>
It is unlikely that use of the default profile will make sense in
conjunction with a statically specified 'springProfiles' property.
For example, if 'springProfiles' is specified as a web.xml context
param, that profile will always be active for that application,
negating the possibility of default profile bean definitions ever
being registered.
The default profile is most useful for ensuring that a valid set of
bean definitions will always be registered without forcing users
to explictly specify active profiles. In the embedded vs. production
examples above, it is assumed that the application JVM will be started
with -DspringProfiles=production when the application is in fact in
a production environment. Otherwise, the embedded/default profile bean
definitions will always be registered.
Earlier naming reflected initial conception of 'environment-specific
bean definitions'. This notion has evolved into bean definitions
specific to particular profiles, and the new naming more clearly
expresses it.
Branch in question is 'env' branch from git://git.springsource.org/sandbox/cbeams.git; merged into
git-svn repository with:
git merge -s recursive -Xtheirs --no-commit env
No merge conflicts, but did need to
git rm spring-build
prior to committing.
With this change, Spring 3.1.0 development is now happening on SVN
trunk. Further commits to the 3.0.x line will happen in an as-yet
uncreated SVN branch. 3.1.0 snapshots will be available
per the usual nightly CI build from trunk.
When using PropertiesLoaderSupport implementations (principally
PropertyPlaceholderConfigurer), an assumption was made that any
Resource representing a set of properties must be file-based. SPR-7547
exposed the fact that if a non-file-based Resource implementation such
as ByteArrayResource were passed in, an IllegalStateException would be thrown
from the AbstractResource base class' implementation of getFilename().
This is now patched, and PropertiesLoaderSupport implementations treat
Resource implementations equally, regardless of file-orientation.
See also SPR-7552.